| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ultrafast electron transport in 2D van der Waals heterostructures Bi2Te3/Fe4GeTe2 probed by terahertz spectroscopy |
| Hui-Xiang Hong(洪晖祥)1, Yun Sun(孙芸)2, Jing Li(李竞)2, Jing-Yi Peng(彭静宜)2, Hui-Ping Zhang(张慧萍)1, Hong-Guang Li(李宏光)4, Shao-Hui Wu(吴少晖)5, Tian-Xiao Nie(聂天晓)2, Yan Peng(彭滟)1,3, and Zuan-Ming Jin(金钻明)1,3,† |
1 Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; 2 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China; 3 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China; 4 Xi'an Institute of Applied Optics, Xi'an 710065, China; 5 AKM Meadville Technologies Co., Ltd., Guangzhou 510663, China |
|
|
|
|
Abstract The research on two-dimensional (2D) magnetic materials and their heterostructures is crucial in fields like spintronics, materials science, and condensed matter physics. This study uses terahertz (THz) time-domain spectroscopy to investigate ultrafast electron transport properties in both van der Waals Fe$_{4}$GeTe$_{2}$ films and Bi$_{2}$Te$_{3}$/Fe$_{4}$GeTe$_{2}$ ferromagnetic/topological heterostructures. Our results show that these heterostructures exhibit effective THz electromagnetic shielding. The complex conductivity spectra of Fe$_{4}$GeTe$_{2}$ films and Bi$_{2}$Te$_{3}$/Fe$_{4}$GeTe$_{2}$ heterostructures with varying Fe$_{4}$GeTe$_{2}$ thicknesses are analyzed using the Drude-Smith model. We quantitatively examine how Fe$_{4}$GeTe$_{2}$ layer thickness affects the direct current conductivity, plasma frequency, carrier momentum scattering time, and back-scattering coefficient. As the number of Fe$_{4}$GeTe$_{2}$ layers increases, intra-layer back-scattering events for charge carriers become more frequent. This work provides THz frequency spectra for both Fe$_{4}$GeTe$_{2}$ and Bi$_{2}$Te$_{3}$/Fe$_{4}$GeTe$_{2}$, aiding in the design and optimization of THz modulators and detectors.
|
Received: 09 March 2025
Revised: 15 April 2025
Accepted manuscript online: 17 April 2025
|
|
PACS:
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
| |
33.20.Ea
|
(Infrared spectra)
|
| |
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFF0719200), the National Natural Science Foundation of China (Grant Nos. 62322115, U24A20226, 61988102, and 62435010), the 111 Project (Grant No. D18014), the Science and Technology Commission of Shanghai Municipality (Grant Nos. 22JC1400200 and 21S31907400). |
Corresponding Authors:
Zuan-Ming Jin
E-mail: physics_jzm@usst.edu.cn
|
Cite this article:
Hui-Xiang Hong(洪晖祥), Yun Sun(孙芸), Jing Li(李竞), Jing-Yi Peng(彭静宜), Hui-Ping Zhang(张慧萍), Hong-Guang Li(李宏光), Shao-Hui Wu(吴少晖), Tian-Xiao Nie(聂天晓), Yan Peng(彭滟), and Zuan-Ming Jin(金钻明) Ultrafast electron transport in 2D van der Waals heterostructures Bi2Te3/Fe4GeTe2 probed by terahertz spectroscopy 2025 Chin. Phys. B 34 077304
|
[1] Novoselov K, Mishchenko A, Carvalho A and Neto A C 2016 Science 353 aac9439 [2] Di Bartolomeo A 2020 Nanomaterials 10 579 [3] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S,Wu J, Zhang Y and Wang F 2014 Nat. Nanotech. 9 682 [4] Geim A and Grigorieva I 2013 Nature 499 419 [5] Liu C, Yan X, Song X, Ding S, Zhang D W and Zhou P 2018 Nat. Nanotech. 13 404 [6] Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X and Wang K L 2020 Nat. Commun. 11 3860 [7] Tang W, Liu H, Li Z, Pan A and Zeng Y J 2021 Adv. Sci. 8 2100847 [8] Sun R, Yang S, Yang X, Vetter E, Sun D, Li N, Su L, Li Y, Li Y, Gong Z Z, Xie Z K, Hou K Y, Gul Q, HeW, Zhang X Q and Cheng Z H 2019 Nano Lett. 19 4420 [9] Gong C and Zhang X 2019 Science 363 eaav4450 [10] Tang C, Alahmed L, Mahdi M, Xiong Y, Inman J, McLaughlin N J, Zollitsch C, Kim T H, Du C R, Kurebayashi H, Santos E J G, Zhang W, Li P and Jin W C 2023 Phys. Rep. 1032 1 [11] Yang W, Han J C, Cao Y, Lin X Y and Zhao W S 2021 Acta Phys. Sin. 70 129101 (in Chinese) [12] Jiang L X, Li Q C, Zhang X, Li J F, Zhang J, Chen Z X, Zeng M and Wu H 2024 Acta Phys. Sin. 73 017505 (in Chinese) [13] Wang H, Lu H, Guo Z, Li A, Wu P, Li J, Xie W, Sun Z, Li P, Damas H, Friedel A, Migot S, Ghanbaja J, Moreau L, Fagot-Revurat Y, Petit- Watelot S, Hauet T, Robertson J, Mangin S, Zhao W S and Nie T X 2023 Nat. Commun. 14 2483 [14] Eom J, Lee I, Kee J, Cho M, Seo J, Suh H, Choi H, Sim Y, Chen S, Chang H, Baek S, Petrovic C, Ryu H, Jang C, Kim Y, Yang C, Seong M, Lee J, Park S and Choi J 2023 Nat. Commun. 14 5605 [15] Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T X, Zhao W S and Wang K 2020 ACS Nano 14 100453 [16] Guillet T, Galceran R, Sierra J F, Belarre F J, Ballesteros B, CostacheM V, Dosenovic D, Okuno H, Marty A, Jamet M, Bonell F and Valenzuela S O 2024 Nano Lett. 24 822 [17] Xia T, Yang X, Zhang Y, Liu X, Cai X, Liu C, Yao Q, Kou X andWang W 2024 Chin. Phys. B 33 087504 [18] Li J Y, Wu F L and Zhang Q 2024 Prog. Phys. 44 293 [19] Liu B, Liu S, Yang L, Chen Z, Zhang E, Li Z, Wu J, Ruan X, Xiu F, Liu W, He L, Zhang R and Xu Y 2020 Phys. Rev. Lett. 125 267205 [20] Li N, Sun Y B, Sun R, Yang X, Zhang W, Xie Z K, Liu J N, Li Y, Li Y, Gong Z Z, Zhang X Q, HeWand Cheng Z H 2022 Phys. Rev. B 105 144415 [21] Gong Y, Yang Z, Teklu A, Xie T, Kern N, May A, McGuire M, Brennan C, Guo E J, Kuthirummal N, Cetin J, Zhang Q, Hu M and Gong C 2024 Ultrafast Sci. 4 0064 [22] Chen X, Wang H, Liu H, Wang C, Wei G, Fang C, Wang H,Geng C, Liu S, Li P, Yu H, Zhao W, Miao J, Li Y, Wang L, Nie T, Zhao J and Wu X 2022 Adv. Mater. 34 2106172 [23] Tomarchio L, Polewczyk V, Mosesso L, Marty A, Macis S, Jamet M, Bonell F and Lupi S 2024 npj 2D Mater. Appl. 8 73 [24] Xie J Y, Qian J, Wang T J, Zhou L J, Zang X F, Chen L, Zhu Y M and Zhuang S L 2023 Adv. Photon. 5 066002 [25] Liu Y P, Shi J C and Chen C Y 2022 Chin. Phys. Lett. 39 018701 [26] Peng Y, Huang J L, Luo J, Yang Z F,Wang L P,Wu X, Zang X F, Chen Y, Gu M, Hu Q, Zhang X C, Zhu Y M and Zhuang S L 2021 PhotoniX 2 12 [27] Lyu J M, Shen S Y, Chen L, Zhu Y M and Zhuang S L 2023 PhotoniX 4 28 [28] Zhu Y, Zang X F, Chi H X, Zhou Y W, Zhu Y M and Zhuang S L 2023 Light Advanced Manufacturing 4 2689 [29] Wu H Z, Guo Q, Tu Y Y, Lyu Z H, Wang X W, Li Y Q, Zhou Z Y, Zhang D W, Zhao Z X and Yuan J M 2021 Chin. Phys. Lett. 7 074201 [30] Ding J, Meng Q, Shen Y, Ding C, Su B, Cui H and Zhang C 2023 Chin. Phys. B 32 048702 [31] Jin Z M, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M and Turchinovich D 2015 Nat. Phys. 11 761 [32] Jin Z M, Li J, Zhang W, Guo C, Wan C, Han X, Cheng Z, Zhang C, Balakin A V, Shkurinov A P, Peng Y, Ma G M, Zhu Y M, Yao J and Zhuang S L 2020 Phys. Rev. Appl. 14 014032 [33] Jin Z M, Ruan S, Zhou X, Song B, Song C, Chen X, Pan F, Peng Y, Zhang C, Ma G M, Zhu Y M and Zhuang S L 2020 Phys. Rev. B 102 014438 [34] Krewer K L, Zhang W, Arabski J, Schmerber G, Beaurepaire E, Bonn M and Turchinovich D 2020 Appl. Phys. Lett. 116 102406 [35] Pupeza I, Wilk R and Koch M 2007 Opt. Express 15 4335 [36] Wu K and Rahman M 2023 Electromagnetic Science 1 0010131 [37] Kamboj V, Singh A, Ferrus T, Beere H, Duffy L, Hesjedal T, Barnes C and Ritchie D 2017 ACS Photon. 4 2711 [38] Li G G, Ma S P, Li Z, Zhang Y W, Diao J L, Xia L, Zhang Z W and Huang Y 2022 ACS Nano 16 7861 [39] Suo P, Xia W, Zhang W J, Zhu X Q, Guo J J, Fu J B, Lin X, Guo Y F and Ma G H 2020 Acta Phys. Sin. 69 207302 (in Chinese) [40] Wang C H, Xia W, Suo P, Wang W, Lin X, Guo Y F and Ma G H 2022 Acta Phys. Sin. 71 237303 (in Chinese) [41] Ye Z, Jin Z, Jiang Y, Lu Q, Jia M, Qian D, Huang X, Li Z, Peng Y and Zhu Y 2024 Chin. Phys. B 33 074210 [42] Cao X, Huang Y, Xi Y, Lei Z, Wang J, Liu H, Shi M, Han T, Zhang M and Xu X 2023 Chin. Phys. B 32 116701 [43] Cheng B, Wang Y, Barbalas D, Higo T, Nakatsuji S and Armitage N P 2019 Appl. Phys. Lett. 115 012405 [44] Krewer K L, Mics Z, Arabski J, Schmerber G, Beaurepaire E, Bonn M and Turchinovich D 2018 Opt. Lett. 43 447 [45] Guan Y, Xing J, Ji L, Wu J B and Jin B B 2019 Low Temp. Phys. Lett. 41 0135 [46] Sun Y, Mao Z, Hou B, Liu G and Wang L 2007 Chin. Phys. Lett. 24 414 [47] Berdel K, Rivas J, Bolívar P, Maagt P and Kurz H 2005 IEEE Trans. Microwave Theory Tech. 53 1266 [48] Han P Y and Zhang X 2001 Meas. Sci. Technol. 12 1747 [49] Li G, Amer N, Hafez H A, Huang S, Turchinovich D, Mochain V N, Hegmann F A and Titova L V 2020 Nano Lett. 20 636 [50] Lin Z, Liu J, PengW, Zhu Y, Zhao Y, Jiang K, Peng M and Tan Y 2020 ACS Nano 14 2109 [51] Cheng Z, Cao Y, Wang R, Liu X, Fan F and Huang Y 2023 J. Mater. Chem. A 11 5593 [52] Theja V C S, Assi D S, Huang H, Alsulami R S, Chen B, Chan C, Shek C, Karthikeyan V and Roy V A L 2023 Adv. Mater. Interfaces 10 2300440 [53] Wan H, Liu N, Tang J, Wen Q and Xiao X 2021 ACS Nano 15 13646 [54] Yang S, Lin Z, Wang X, Huang J, Yang R, Chen Z, Jia Y, Zeng Z, Cao Z, Zhu H, Hu Y, Li E, Chen H, Wang T, Deng S and Gui X 2024 Nano-Micro Lett. 16 165 [55] Guo Y, Chen Z, Jin Z, Wang X, Zhang C, Balakin A V, Shkurinov A P, Peng Y, Zhu Y and Zhuang S L 2024 Adv. Funct. Mater. 34 2407749 [56] Jin Z M, Peng Y, Fang Y Q, Ye Z J, Fan Z Y, Liu Z L, Bao X C, Gao H, RenW,Wu J, Ma G H, Chen Q L, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M and Zhuang S L 2022 Light Sci. Appl. 11 209 [57] Jin Z M, Gehrig D, Dyer-Smith C, Heilweil E J, Laquai F, Bonn M and Turchinovich D 2014 J. Phys. Chem. Lett. 5 36623668 [58] Huang L, Zhao Y, Thi N L, Lee S H, Peng Z, Kim S, Shin H J, Park J, Kim H J, Hong J I, Bang J, Lee H S, Kim K W and Kim D H 2022 Current Appl. Phys 41 81 [59] Thoman A, Kern A, Helm H and Walther M 2008 Phys. Rev. B 77 195405 [60] Smith N V 2001 Phys. Rev. B 64 155106 [61] Cocker T L, Baillie D, Buruma M, Titova L V, Sydora R D, Marsiglio F and Hegmann F A 2017 Phys. Rev. B 96 205439 [62] Lan Z Q, Li Z S, Xu H R, Liu F, Jin Z M, Peng Y and Zhu Y M 2024 Chin. Phys. Lett. 41 044203 [63] Wang Y F, Xu S J, Yang J and Su F H 2023 Chin. Phys. B 32 067802 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|