Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027103    DOI: 10.1088/1674-1056/adf040
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Janus effect of inter-orbital hybridization on correlation strength of strongly correlated systems: A dynamical mean-field study

Jian Sun(孙健)1,†, Yinchang Zhao(赵银昌)2, and Chao Lian(廉超)3
1 School of Mathematics, Physics, and Statistics, Shanghai Polytechnic University, Shanghai 201209, China;
2 Department of Physics, Yantai University, Yantai 264005, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In multi-orbital systems, the correlation strength is typically attributed to Coulomb interactions and Hund's couplings. However, this study demonstrates that on-site inter-orbital hybridization can also significant influence the correlation strength of the system. We investigate the impact of on-site inter-orbital hybridization on the correlation strength of a two-orbital Hubbard model on a square lattice using the dynamical mean-field theory combined with Lanczos exact diagonalization. Our findings reveal a distinct Janus effect: on-site inter-orbital hybridization enhances correlation strength in the non-half-filled regime while suppresses it at half-filling. This dual role of on-site inter-orbital hybridization provides a fundamental mechanism for tuning the strength of correlations in multi-orbital systems.
Keywords:  strongly correlated multi-orbital system      inter-orbital hybridization      dynamical mean-field theory  
Received:  31 March 2025      Revised:  14 July 2025      Accepted manuscript online:  16 July 2025
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174327) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2023ZD09).
Corresponding Authors:  Jian Sun     E-mail:  sunjian@sspu.edu.cn

Cite this article: 

Jian Sun(孙健), Yinchang Zhao(赵银昌), and Chao Lian(廉超) Janus effect of inter-orbital hybridization on correlation strength of strongly correlated systems: A dynamical mean-field study 2026 Chin. Phys. B 35 027103

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc 130 3296
[2] Hsu T, Luo J, Yeh K, Chen T, Huang T, Wu P M, Lee Y, Huang Y, Chu Y, Yan D and Wu M 2008 Proc. Natl. Acad. Sci. USA 105 14262
[3] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[4] Li J and Wang Y P 2008 Chin. Phys. Lett. 25 2232
[5] Jiang Q, Kang Y T and Yao D X 2013 Chin. Phys. B 22 087402
[6] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P,Wang B, Cheng J, Yao D, Zhang G and Wang M 2023 Nature 621 493
[7] Wang Y, Jiang K, Wang Z, Zhang F C and Hu J 2024 Phys. Rev. B 110 205122
[8] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y and Cheng J G 2024 Phys. Rev. X 14 011040
[9] Zhang M, Zhang Y, Guo H and Yang F 2021 Chin. Phys. B 30 108204
[10] Wang M,Wen H H,Wu T, Yao D X and Xiang T 2021 Chin. Phys. Lett. 41 077402
[11] Jiang K, Wang Z and Zhang F C 2024 Chin. Phys. Lett. 41 017402
[12] Nakatsuji S, Hall D, Balicas L, Fisk Z, Sugahara K, Yoshioka M and Maeno Y 2003 Phys. Rev. Lett. 90 137202
[13] Anisimov V I, Nekrasov I A, Kondakov D E, Rice T M and Sigrist M 2002 Eur. Phys. J. B 25 191
[14] Castellani C, Natoli C R and Ranninger J 1978 Phys. Rev. B 18 4945
[15] Grieger D and Fabrizio M 2015 Phys. Rev. B 92 075121
[16] Neupane M, Richard P, Pan Z H, Xu Y M, Jin R, Mandrus D, Dai X, Fang Z, Wang Z and Ding H 2009 Phys. Rev. Lett. 103 097001
[17] Medici L d, Georges A and Biermann S 2005 Phys. Rev. B 72 205124
[18] Song Y and Zou L J 2005 Phys. Rev. B 72 085114
[19] Wang Y L, Huang L, Du L and Dai X 2005 Chin. Phys. B 25 037103
[20] Werner P and Millis A J 2007 Phys. Rev. Lett. 99 126405
[21] Georges A, de’Medici L and Mravlje J 2013 Annu. Rev. Condens. Matter Phys. 4 137
[22] Stadler K M, Kotliar G,Weichselbaum A and Delft J V 2019 Ann. Phys. 405 365
[23] De’Medici L, Mravlje J and Georges A 2011 Phys. Rev. Lett. 107 256401
[24] Matt C E, Sutter D, Cook A M, et al. 2018 Nat. Commun. 9 972
[25] Haule K and Kotliar G 2009 New J. Phys. 11 025021
[26] Yu R, Zhu J X and Si Q M 2018 Phys. Rev. Lett. 121 227003
[27] Kusunose H, Yotsuhashi S and Miyake K 2000 Phys. Rev. B 62 4403
[28] Friedt O, Braden M, André G, Adelmann P, Nakatsuji S and Maeno Y 2001 Phys. Rev. B 63 174432
[29] Stanescu T D, Galitski V and Das Sarma S 2008 Phys. Rev. B 78 195114
[30] Qu X Z, Qu D W, Yi X W, Li W and Su G 2023 arXiv:2404.11369
[cond-mat]
[31] Kugler F B and Kotliar G 2022 Phys. Rev. Lett. 129 096403
[32] Nunez-Fernandez Y and Hallberg K 2018 J. Phys.: Conf. Ser. 1041 012002
[33] Yu R and Si Q M 2017 Phys. Rev. B 96 125110
[34] Huang J, Yu R, Xu Z, et al. 2022 Commun. Phys. 5 29
[35] Koga A, Kawakami N, Rice T M and Sigrist M 2005 Phys. Rev. B 72 045128
[36] Winograd E A and de’Medici L 2014 Phys. Rev. B 89 085127
[37] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[38] Liebsch A and Ishida H 2011 J. Phys.: Condens. Matter 24 053201
[39] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[40] Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395
[41] Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 349
[42] Caffarel M and Krauth W 1994 Phys. Rev. Lett. 72 1545
[43] Dagotto E 1994 Rev. Mod. Phys. 66 763
[44] Sun J, Liu Y and Song Y 2016 Acta Phys. Sin. 64 247101 (in Chinese)
[45] Mahan G D 2000 Many-Particle Physics, 3nd edn. (New York: Springer) pp. 71–75
[46] Manini N, Santoro G E, Corso A D and Tosatti E 2002 Phys. Rev. B 66 115107
[1] Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2
Da-Liang Guo(郭达良), and Huan Li(黎欢). Chin. Phys. B, 2025, 34(6): 067102.
[2] Structural, electronic and magnetic properties of Fe-doped strontium ruthenates
Nan Liu(刘楠), Xiao-Chao Wang(王晓超), and Liang Si(司良). Chin. Phys. B, 2023, 32(11): 117101.
[3] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[4] Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理). Chin. Phys. B, 2016, 25(11): 117101.
No Suggested Reading articles found!