Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 120304    DOI: 10.1088/1674-1056/adefd7
GENERAL Prev  

Hybrid quantum-classical multi-agent decision-making framework based on hierarchical Bayesian networks in the noisy intermediate-scale quantum era

Hao Shi(石皓)1, Chenghao Han(韩成豪)1, Peng Wang(王鹏)2, and Ming Zhang(张明)1,†
1 College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
2 College of Science, National University of Defense Technology, Changsha 410073, China
Abstract  Although quantum Bayesian networks provide a promising paradigm for multi-agent decision-making, their practical application faces two challenges in the noisy intermediate-scale quantum (NISQ) era. Limited qubit resources restrict direct application to large-scale inference tasks. Additionally, no quantum methods are currently available for multi-agent collaborative decision-making. To address these, we propose a hybrid quantum-classical multi-agent decision-making framework based on hierarchical Bayesian networks, comprising two novel methods. The first one is a hybrid quantum-classical inference method based on hierarchical Bayesian networks. It decomposes large-scale hierarchical Bayesian networks into modular subnetworks. The inference for each subnetwork can be performed on NISQ devices, and the intermediate results are converted into classical messages for cross-layer transmission. The second one is a multi-agent decision-making method using the variational quantum eigensolver (VQE) in the influence diagram. This method models the collaborative decision-making with the influence diagram and encodes the expected utility of diverse actions into a Hamiltonian and subsequently determines the intra-group optimal action efficiently. Experimental validation on the IonQ quantum simulator demonstrates that the hierarchical method outperforms the non-hierarchical method at the functional inference level, and the VQE method can obtain the optimal strategy exactly at the collaborative decision-making level. Our research not only extends the application of quantum computing to multi-agent decision-making but also provides a practical solution for the NISQ era.
Keywords:  quantum Bayesian networks      multi-agent decision-making      hybrid quantum-classical algorithms      hierarchical Bayesian networks  
Received:  09 April 2025      Revised:  26 June 2025      Accepted manuscript online:  15 July 2025
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62473371 and 61673389).
Corresponding Authors:  Ming Zhang     E-mail:  zhangming@nudt.edu.cn
About author:  2025-120304-250625.pdf

Cite this article: 

Hao Shi(石皓), Chenghao Han(韩成豪), Peng Wang(王鹏), and Ming Zhang(张明) Hybrid quantum-classical multi-agent decision-making framework based on hierarchical Bayesian networks in the noisy intermediate-scale quantum era 2025 Chin. Phys. B 34 120304

[1] Buskey G,Wyeth G and Roberts J 2001 Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May 21-26, 2001, Seoul, Korea, p. 1635
[2] Wu J H, Zhang T, Li Y and Zhou G J 2023 Expert Systems with Applications 240 122448
[3] Slowinski R, Greco S and Matarazzo B 2022 Rough Sets in Decision- Making (Berlin, Heidelberg: Springer) pp. 1
[4] Ni Z, Phillips L D and Hanna G B 2010 The Use of Bayesian Networks in Decision-Making (Berlin, Heidelberg: Springer) pp. 351
[5] Koller D and Friedman N 2009 Probabilistic Graphical Models: Principles and Techniques (Cambridge, MA, USA: MIT Press)
[6] Neil M, Fenton N and Nielsen L 2000 The Knowledge Engineering Review 15 257
[7] Lin C S and Garrido M I 2022 Neuroscience & Biobehavioral Reviews 137 104649
[8] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge: Cambridge University Press)
[9] Shor P 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science (SFCs’94), November 20-22, 1994, Washington, DC, United States, p. 124
[10] Grover L K 1996 Proceedings of the 28th ACM Symposium on Theory of Computing (STOC’96), May 22-24, 1996, Philadelphia, Pennsylvania, USA, p. 212
[11] Harrow A W, Hassidim A and Lloyd S 2009 Phys. Rev. Lett. 103 150502
[12] Preskill J 2018 Quantum 2 79
[13] Blekos K, Brand D, Ceschini A, et al. 2024 Physics Reports 1068 1
[14] Cerezo M et al. 2021 Nature Reviews Physics 3 625
[15] Farhi E, Goldstone J and Gutmann S 2014 arXiv:1411.4028 [quant-ph]
[16] Tucci R R 1995 International Journal of Modern Physics B 9 295
[17] Low G H, Yoder T J, Chuang I L 2014 Phys. Rev. A 89 062315
[18] Biamonte J D, Wittek P, Pancotto N, et al. 2017 Nature 549 195
[19] Jin Y X, Xu H Z, Wang Z A, et al. 2024 Chin. Phys. B 33 050301
[20] Ghosh I 2021 Reson 26 671
[21] Ozols M, Roetteler M and Roland J 2013 ACM Transactions on Computation Theory 5 1
[22] Moreira C and Wichert A 2016 Frontiers in Psychology 7 11
[23] Moreira C and Wichert A 2018 Journal of Mathematical Psychology 82 73
[24] Borujeni S E, Nannapaneni S, Nguyen N H, et al. 2021 Expert Systems with Applications 176 114768
[25] Nguyen N and Chen K 2022 IEEE Access 10 54110
[26] Harikrishnakumar R and Nannapaneni S 2023 Expert Systems with Applications 221 119749
[27] Carrascal G, Botella G, Barrio A D, et al. 2023 EPJ Quantum Technology 10 13
[28] Fathallah W, Amor N B and Leray P 2024 International Journal of Approximate Reasoning 175 109307
[29] Nayak P and Seshadri K 2023 Big Data and Artificial Intelligence: 11th International Conference, December 7-9, 2023, Delhi, India, p. 135
[30] Oliveira M D and Barbosa L S 2023 Foundations of Science 28 21
[31] McClean J R, Romero J, Babbush R and Aspuru-Guzik A 2016 New J. Phys. 18 023023
[32] Peruzzo A, McClean J, Shadbolt P, et al. 2014 Nat. Commun. 5 4213
[33] Chen B L and Zhang D B 2023 Chin. Phys. Lett. 40 010303
[34] Mastroianni C, Plastina F, Settino J and Vinci A 2024 IEEE Transactions on Quantum Engineering 5 1
[35] Zheng Q, Zhu P,Wu C, et al. 2024 Science China Information Sciences 67 192502
[36] Pearl J 1988 Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (San Francisco, CA, United States: Morgan Kaufmann Publishers Inc.)
[37] Gyftodimos E and Flach P A 2002 Proceedings of the ICML-2002 Workshop on Development of Representations, July 2002, Sydney, Australia, p. 23
[38] Poole D and Mackworth A K 2010 Artificial Intelligence: Foundations of Computational Agents (Cambridge, UK: Cambridge University Press)
[39] Lucas A 2014 Frontiers in Physics 2 5
[40] Norsys Software Corp. 2024 Netica Application. Available at https://norsys.com/netica.html (Accessed: 25 June 2025)
[1] Bayesian phase difference estimation based on single-photon projective measurement
Xu-Hao Yu(余旭豪), Ying Wei(韦颖), Ran Yang(杨然), Wen-Hui Song(宋文慧), Yingning Miao(缪应宁), Wei Zhou(周唯), Xinhui Li(李新慧), Xiaoqin Gao(高小钦), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2025, 34(7): 070305.
[2] Domain adaptation method inspired by quantum convolutional neural network
Chunhui Wu(武春辉), Junhao Pei(裴骏豪), Yihua Wu(吴逸华), Anqi Zhang(张安琪), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2025, 34(7): 070302.
[3] Progressive quantum algorithm for maximum independent set with quantum alternating operator ansatz
Xiao-Hui Ni(倪晓慧), Ling-Xiao Li(李凌霄), Yan-Qi Song(宋燕琪), Zheng-Ping Jin(金正平), Su-Juan Qin(秦素娟), and Fei Gao(高飞). Chin. Phys. B, 2025, 34(7): 070304.
[4] Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
Zilu Chen(陈子禄), Zhijin Guan(管致锦), Shuxian Zhao(赵书娴), and Xueyun Cheng(程学云). Chin. Phys. B, 2025, 34(5): 050305.
[5] Effect of pseudo-random number on the security of quantum key distribution protocol
Xiao-Liang Yang(杨晓亮), Yu-Qing Li(李毓擎), and Hong-Wei Li(李宏伟). Chin. Phys. B, 2025, 34(2): 020301.
[6] Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Kehan Wang(王柯涵), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2025, 34(1): 010305.
[7] Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms
Xiangxiang Sun(孙祥祥), Hao-Yue Qi(齐浩月), Pengfei Zhang(张鹏飞), and Wei Zheng(郑炜). Chin. Phys. B, 2024, 33(11): 110304.
[8] Multi-party semi-quantum private comparison protocol of size relation based on two-dimensional Bell states
Bing Wang(王冰), Li-Hua Gong(龚黎华), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2024, 33(11): 110303.
[9] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[10] A quantum blind signature scheme based on dense coding for non-entangled states
Ke Xing(邢柯), Ai-Han Yin(殷爱菡), and Yong-Qi Xue(薛勇奇). Chin. Phys. B, 2024, 33(6): 060309.
[11] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[12] Interplay between topology and localization on superconducting circuits
Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚). Chin. Phys. B, 2024, 33(6): 060311.
[13] Quafu-RL: The cloud quantum computers based quantum reinforcement learning
Yu-Xin Jin(靳羽欣), Hong-Ze Xu(许宏泽), Zheng-An Wang(王正安), Wei-Feng Zhuang(庄伟峰), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(曾进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050301.
[14] Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computers
Hong-Ze Xu(许宏泽), Wei-Feng Zhuang(庄伟峰), Zheng-An Wang(王正安), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yu-Xin Jin(靳羽欣), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(增进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050302.
[15] An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure
Kai Wu(吴凯), Rigui Zhou(周日贵), and Jia Luo(罗佳). Chin. Phys. B, 2024, 33(5): 050305.
No Suggested Reading articles found!