COMPUTATIONAL PROGRAMS FOR PHYSICS |
Prev
Next
|
|
|
Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computers |
Hong-Ze Xu(许宏泽)1,†, Wei-Feng Zhuang(庄伟峰)1,†, Zheng-An Wang(王正安)1, Kai-Xuan Huang(黄凯旋)1, Yun-Hao Shi(时运豪)3,5,6, Wei-Guo Ma(马卫国)3,5,6, Tian-Ming Li(李天铭)3,5,6, Chi-Tong Chen(陈驰通)3,5,6, Kai Xu(许凯)3,1, Yu-Long Feng(冯玉龙)1, Pei Liu(刘培)1, Mo Chen(陈墨)1, Shang-Shu Li(李尚书)3,5,6, Zhi-Peng Yang(杨智鹏)1, Chen Qian(钱辰)1, Yu-Xin Jin(靳羽欣)1, Yun-Heng Ma(马运恒)1, Xiao Xiao(肖骁)1, Peng Qian(钱鹏)1, Yanwu Gu(顾炎武)1, Xu-Dan Chai(柴绪丹)1, Ya-Nan Pu(普亚南)1, Yi-Peng Zhang(张翼鹏)1, Shi-Jie Wei(魏世杰)1, Jin-Feng Zeng(增进峰)1, Hang Li(李行)1, Gui-Lu Long(龙桂鲁)2,1, Yirong Jin(金贻荣)1, Haifeng Yu(于海峰)1, Heng Fan(范桁)3,1,5,6, Dong E. Liu(刘东)2,1,4, and Meng-Jun Hu(胡孟军)1,‡ |
1 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 2 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; 3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 Frontier Science Center for Quantum Information, Beijing 100184, China; 5 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 6 CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100190, China |
|
|
Abstract We introduce Quafu-Qcover, an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends. Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm (QAOA). It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization (QUBO) model and its corresponding Ising model, which can be subsequently transformed into a weight graph. The core of Qcover relies on a graph decomposition-based classical algorithm, which efficiently derives the optimal parameters for the shallow QAOA circuit. Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers. Compared to a general-purpose compiler, our compiler demonstrates the ability to generate shorter circuit depths, while also exhibiting superior speed performance. Additionally, the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time, utilizing the most recent calibration data from the superconducting quantum devices. This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity. The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time, enabling asynchronous processing. Moreover, it incorporates modules for results preprocessing and visualization, facilitating an intuitive display of solutions for combinatorial optimization problems. We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.
|
Received: 08 November 2023
Revised: 23 December 2023
Accepted manuscript online: 26 December 2023
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Haifeng Yu, Meng-Jun Hu and Wei-Feng Zhuang are supported by the National Natural Science Foundation of China (Grant No. 92365206). Hong-Ze Xu acknowledges the support of the China Postdoctoral Science Foundation (Certificate Number: 2023M740272). Zheng-An Wang is supported by the National Natural Science Foundation of China (Grant No. 12247168) and China Postdoctoral Science Foundation(Certificate Number: 2022TQ0036). |
Corresponding Authors:
Meng-Jun Hu
E-mail: humj@baqis.ac.cn
|
Cite this article:
Hong-Ze Xu(许宏泽), Wei-Feng Zhuang(庄伟峰), Zheng-An Wang(王正安), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yu-Xin Jin(靳羽欣), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(增进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军) Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computers 2024 Chin. Phys. B 33 050302
|
[1] Childs A M and van Dam W 2010 Rev. Mod. Phys. 82 1 [2] Montanaro A 2016 npj Quantum Information 2 1 [3] Shor P 1994 Algorithms for quantum computation: discrete logarithms and factoring Proceedings 35th Annual Symposium on Foundations of Computer Science pp. 124-134 [4] Shor P W 1999 SIAM Review 41 303 [5] Grover L K 1997 Phys. Rev. Lett. 79 325 [6] Harrow A W, Hassidim A and Lloyd S 2009 Phys. Rev. Lett. 103 150502 [7] Gulde S, Riebe M, Lancaster G P T, Becher C, Eschner J, Häffner H, Schmidt-Kaler F, Chuang I L and Blatt R 2003 Nature 421 48 [8] Benhelm J, Kirchmair G, Roos C F and Blatt R 2008 Nat. Phys. 4 463 [9] Taylor J M, Engel H A, Dür W, Yacoby A, Marcus C M, Zoller P and Lukin M D 2005 Nat. Phys. 1 177 [10] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502 [11] Clarke J and Wilhelm F K 2008 Nature 453 1031 [12] Barends R, Shabani A, Lamata L, et al. 2016 Nature 534 222 [13] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505 [14] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501 [15] O’Brien J L 2007 Science 318 1567 [16] Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y and Pan J W 2016 Phys. Rev. Lett. 117 210502 [17] Wang H, Qin J, Ding X, Chen M C, Chen S, You X, He Y M, Jiang X, You L, Wang Z, Schneider C, Renema J J, Höfling S, Lu C Y and Pan J W 2019 Phys. Rev. Lett. 123 250503 [18] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y and Pan J W 2020 Science 370 1460 [19] Kane B E 1998 Nature 393 133 [20] Ladd T D, Goldman J R, Yamaguchi F, Yamamoto Y, Abe E and Itoh K M 2002 Phys. Rev. Lett. 89 017901 [21] He Y, Gorman S K, Keith D, Kranz L, Keizer J G and Simmons M Y 2019 Nature 571 371 [22] Preskill J 2018 Quantum 2 79 [23] Bharti K, Cervera-Lierta A, Kyaw T H, Haug T, Alperin-Lea S, Anand A, Degroote M, Heimonen H, Kottmann J S, Menke T, Mok W K, Sim S, Kwek L C and Aspuru-Guzik A 2022 Rev. Mod. Phys. 94 015004 [24] Farhi E, Goldstone J and Gutmann S 2014 arXiv: 1411.4028 [25] Bravyi S, Kliesch A, Koenig R and Tang E 2020 Phys. Rev. Lett. 125 260505 [26] Egger D J, Mareček J and Woerner S 2021 Quantum 5 479 [27] Patel Y J, Jerbi S, Bäck, T and Dunjko V 2024 EPJ Quantum Technol. 11 6 [28] Farhi E, Gamarnik D and Gutmann S 2020 arXiv: 2004.09002 [29] McClean J R, Harrigan M P, Mohseni M, Rubin N C, Jiang Z, Boixo S, Smelyanskiy V N, Babbush R and Neven H 2021 PRX Quantum 2 030312 [30] Akshay V, Philathong H, Morales M E S and Biamonte J D 2020 Phys. Rev. Lett. 124 090504 [31] Stilck França D and García-Patrón R 2021 Nat. Phys. 17 1221 [32] Dam W v, Eldefrawy K, Genise N and Parham N 2021 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) pp. 160-170 [33] Wurtz J and Lykov D 2021 Phys. Rev. A 104 052419 [34] Alsina D and Latorre J I 2016 Phys. Rev. A 94 012314 [35] Wang Y, Li Y, Yin Z q and Zeng B 2018 npj Quantum Information 4 46 [36] Harper R and Flammia S T 2019 Phys. Rev. Lett. 122 080504 [37] Huang W J, Chien W C, Cho C H, Huang C C, Huang T W and Chang C R 2020 Quantum Engineering 2 e45 [38] Ball P 2021 Nature 599 542 [39] Quafu quantum computing cloud platform https://quafu.baqis.ac.cn, [40] Zhuang W F, Pu Y N, Xu H Z, Chai X, Gu Y, Ma Y, Qamar S, Qian C, Qian P, Xiao X, Hu M J and Liu D E 2021 arXiv: 2112.11151 [41] Botea A, Kishimoto A and Marinescu R 2018 On the complexity of quantum circuit compilation Proceedings of the International Symposium on Combinatorial Search vol. 9 pp. 138-142 [42] Siraichi M Y, Santos V F d, Collange C and Pereira F M Q 2018 Qubit allocation Proceedings of the 2018 International Symposium on Code Generation and Optimization CGO 2018 (New York, NY, USA: Association for Computing Machinery) pp. 113-125 [43] Wille R and Burgholzer L 2023 Proceedings of the 2023 International Symposium on Physical Design ISPD ’23 (New York: Association for Computing Machinery) pp. 198-204 [44] Lao L and Browne D E 2022 Proceedings of the 49th Annual International Symposium on Computer Architecture ISCA ’22 (New York: Association for Computing Machinery) pp. 351-365 [45] Alam M, Saki A A and Ghosh S 2020 57th ACM/IEEE Design Automation Conference (DAC) pp. 1-6 [46] Alam M, Ash-Saki A and Ghosh S 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) pp. 215-228 [47] Weidenfeller J, Valor L C, Gacon J, Tornow C, Bello L, Woerner S and Egger D J 2022 Quantum 6 870 [48] Jin Y, Fong L, Chen Y, Hayes A B, Zhang S, Zhang C, Hua F, Z E and Zhang 2021 arXiv: 2112.06143 [49] Glover F, Kochenberger G, Hennig R and Du Y 2022 Annals of Operations Research 314 141 [50] Neven H, Denchev V S, Drew-Brook M, Zhang J, Macready W G and Rose G 2009 Quantum 4 1 [51] Qiskit contributors 2023 Qiskit: An open-source framework for quantum computing https://github.com/Qiskit [52] Steiger D S, Häner T and Troyer M 2018 Quantum 2 49 [53] Suzuki Y, Kawase Y, Masumura Y, Hiraga Y, Nakadai M, Chen J, Nakanishi K M, Mitarai K, Imai R, Tamiya S, Yamamoto T, Yan T, Kawakubo T, Nakagawa Y O, Ibe Y, Zhang Y, Yamashita H, Yoshimura H, Hayashi A and Fujii K 2021 Quantum 5 559 [54] Sivarajah S, Dilkes S, Cowtan A, Simmons W, Edgington A and Duncan R 2020 Quantum Science and Technology 6 014003 [55] Gray J 2018 Journal of Open Source Software 3 819 [56] Qton https://github.com/thewateriswide/qton 2.1 [57] Zhou L, Wang S T, Choi S, Pichler H and Lukin M D 2020 Phys. Rev. X 10 021067 [58] Lloyd S 1996 Science 273 1073 [59] Suzuki M 1991 Journal of Mathematical Physics 32 400 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|