|
|
|
Information scrambling in a partially confined quantum link model |
| Yifan Luo(罗祎帆)1,2, Zheng Tang(唐正)3, Li Chen(陈立)3,†, and Wei Zheng(郑炜)1,2,4,‡ |
1 Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Institute of Theoretical Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China; 4 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China |
|
|
|
|
Abstract Quantum link models (QLMs) serve as experimentally accessible platforms for studying lattice gauge theories with finite-dimensional Hilbert spaces. In this work, we investigate information scrambling in the partially confined phase of a spin-1 quantum link model by calculating the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement entropy. We observe that, in the partially confined phase, information scrambling exhibits significant asymmetry, manifested as the unidirectional propagation of both OTOCs and entanglement entropy. This phenomenon stands in stark contrast to the isotropic spreading observed in the deconfined phase and the localization characteristic of the confined phase. Furthermore, the simultaneous occurrence of the unidirectional propagation of both OTOCs and entanglement entropy, together with the $\theta$-induced asymmetric excitation propagation, reveals a direct connection between information scrambling and charge confinement.
|
Received: 13 July 2025
Revised: 27 August 2025
Accepted manuscript online: 29 August 2025
|
|
PACS:
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
| |
11.15.Ha
|
(Lattice gauge theory)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. GG2030007011 and GG2030040453) and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302004). L.C. acknowledges support from the National Natural Science Foundation of China (Grant No. 12174236) and the fund for the Shanxi 1331 Project. |
Corresponding Authors:
Li Chen, Wei Zheng
E-mail: lchen@sxu.edu.cn;zw8796@ustc.edu.cn
|
| About author: 2025-110301-251202.pdf |
Cite this article:
Yifan Luo(罗祎帆), Zheng Tang(唐正), Li Chen(陈立), and Wei Zheng(郑炜) Information scrambling in a partially confined quantum link model 2025 Chin. Phys. B 34 110301
|
[1] Xu S and Swingle B 2024 PRX Quantum 5 010201 [2] Swingle B 2018 Nat. Phys. 14 988 [3] Li J, Fan R, Wang H, Ye B, Zeng B, Zhai H, Peng X and Du J 2017 Phys. Rev. X 7 031011 [4] Nandkishore R and Huse D A 2015 Annu. Rev. Condens. Matter Phys. 6 15 [5] Garcia-Mata I, Jalabert R A and Wisniacki D A 2023 Scholarpedia 18 55237 [6] Hahn D, Luitz D J and Chalker J T 2024 Phys. Rev. X 14 031029 [7] Maldacena J, Shenker S H and Stanford D 2016 J. High Energy Phys. 2016 106 [8] Fan R, Zhang P, Shen H and Zhai H 2017 Sci. Bull. 62 707 [9] Lerose A and Pappalardi S 2020 Phys. Rev. Res. 2 012041 [10] Wilson K G 1974 Phys. Rev. D 10 2445 [11] Allan C G, Dashen R and Gross D J 1977 Phys. Lett. B 66 375 [12] Greensite J 2011 An introduction to the confinement problem (Springer) p. 821 [13] Schwinger J 1962 Phys. Rev. 125 397 [14] Coleman S 1976 Ann. Phys. 101 239 [15] Wiese U 2013 Ann. Phys. (Leipzig) 525 777 [16] Bañuls M C, Blatt R, Catani J, et al. 2020 Euro. Phys. J. D 74 165 [17] Chen L, Zhu F, Tang Z and Gao C 2023 Emerg. Sci. Technol. 2 49 [18] Bauer C W, Davoudi Z, Balantekin A B, et al. 2023 PRX Quantum 4 027001 [19] Aidelsburger M, Barbiero L, Bermudez A, et al. 2022 Phil. Trans. R. Soc. A 380 20210064 [20] Halimeh J C and Hauke P 2020 Phys. Rev. Lett. 125 030503 [21] Halimeh J C, Kasper V and Hauke P 2020 arXiv:2009.07848 [condmat. quant-gas] [22] Bender J, Emonts P and Cirac J I 2023 Phys. Rev. Res. 5 043128 [23] Klco N, Roggero A and Savage M J 2022 Rep. Prog. Phys. 85 064301 [24] Zhang W Y, Liu Y, Cheng Y, He M G, Wang H Y, Wang T Y, Zhu Z X, Su G X, Zhou Z Y, Zheng Y G, Sun H, Yang B, Hauke P, Zheng W, Halimeh J C, Yuan Z S and Pan J W 2025 Nat. Phys. 21 155 [25] Banerjee D, Dalmonte M, Müller M, Rico E, Stebler P, Wiese U J and Zoller P 2012 Phys. Rev. Lett. 109 175302 [26] Chandrasekharan S and Wiese U J 1997 Nucl. Phys. B 492 455 [27] Kühn S, Cirac J I and Bañuls M C 2014 Phys. Rev. A 90 042305 [28] Jackiw R and Rebbi C 1976 Phys. Rev. Lett. 37 172 [29] Batakis N and Lazarides G 1978 Phys. Rev. D 18 4710 [30] Hooft G T 1976 Phys. Rev. D 14 3432 [31] Halimeh J C, McCulloch I P, Yang B and Hauke P 2022 PRX Quantum 3 040316 [32] Tang Z, Zhu F, Luo Y F, Zheng W and Chen L 2024 Phys. Rev. A 110 033302 [33] Qi H Y and Zheng W 2024 Phys. Rev. Res. 6 013047 [34] Cheng Y, Liu S, Zheng W, Zhang P and Zhai H 2022 PRX Quantum 3 040317 [35] Surace F M, Mazza P P, Giudici G, Lerose A, Gambassi A and Dalmonte M 2020 Phys. Rev. X 10 021041 [36] Mil A, Zache T V, Hegde A, Xia A, Bhatt R P, Oberthaler M K, Hauke K, Berges J and Jendrzejewski F 2020 Science 367 1128 [37] Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J and Pan J W 2022 Science 377 311 [38] Wang H Y, Zhang W Y, Yao Z, Liu Y, Zhu Z H, Zheng Y G, Wang X K, Zhai H, Yuan Z S and Pan J W 2023 Phys. Rev. Lett. 131 050401 [39] Gao C, Liu J, Chang M, Pu H and Chen L 2022 Phys. Rev. Res. 4 L042018 [40] Gao C, Tang Z, Zhu F, Zhang Y, Pu H and Chen L 2023 Phys. Rev. B 107 104302 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|