Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 110301    DOI: 10.1088/1674-1056/ae00b1
RAPID COMMUNICATION Prev   Next  

Information scrambling in a partially confined quantum link model

Yifan Luo(罗祎帆)1,2, Zheng Tang(唐正)3, Li Chen(陈立)3,†, and Wei Zheng(郑炜)1,2,4,‡
1 Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Institute of Theoretical Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China;
4 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract  Quantum link models (QLMs) serve as experimentally accessible platforms for studying lattice gauge theories with finite-dimensional Hilbert spaces. In this work, we investigate information scrambling in the partially confined phase of a spin-1 quantum link model by calculating the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement entropy. We observe that, in the partially confined phase, information scrambling exhibits significant asymmetry, manifested as the unidirectional propagation of both OTOCs and entanglement entropy. This phenomenon stands in stark contrast to the isotropic spreading observed in the deconfined phase and the localization characteristic of the confined phase. Furthermore, the simultaneous occurrence of the unidirectional propagation of both OTOCs and entanglement entropy, together with the $\theta$-induced asymmetric excitation propagation, reveals a direct connection between information scrambling and charge confinement.
Keywords:  lattice gauge field      partial confinement phase      quantum link model  
Received:  13 July 2025      Revised:  27 August 2025      Accepted manuscript online:  29 August 2025
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  11.15.Ha (Lattice gauge theory)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. GG2030007011 and GG2030040453) and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302004). L.C. acknowledges support from the National Natural Science Foundation of China (Grant No. 12174236) and the fund for the Shanxi 1331 Project.
Corresponding Authors:  Li Chen, Wei Zheng     E-mail:  lchen@sxu.edu.cn;zw8796@ustc.edu.cn
About author:  2025-110301-251202.pdf

Cite this article: 

Yifan Luo(罗祎帆), Zheng Tang(唐正), Li Chen(陈立), and Wei Zheng(郑炜) Information scrambling in a partially confined quantum link model 2025 Chin. Phys. B 34 110301

[1] Xu S and Swingle B 2024 PRX Quantum 5 010201
[2] Swingle B 2018 Nat. Phys. 14 988
[3] Li J, Fan R, Wang H, Ye B, Zeng B, Zhai H, Peng X and Du J 2017 Phys. Rev. X 7 031011
[4] Nandkishore R and Huse D A 2015 Annu. Rev. Condens. Matter Phys. 6 15
[5] Garcia-Mata I, Jalabert R A and Wisniacki D A 2023 Scholarpedia 18 55237
[6] Hahn D, Luitz D J and Chalker J T 2024 Phys. Rev. X 14 031029
[7] Maldacena J, Shenker S H and Stanford D 2016 J. High Energy Phys. 2016 106
[8] Fan R, Zhang P, Shen H and Zhai H 2017 Sci. Bull. 62 707
[9] Lerose A and Pappalardi S 2020 Phys. Rev. Res. 2 012041
[10] Wilson K G 1974 Phys. Rev. D 10 2445
[11] Allan C G, Dashen R and Gross D J 1977 Phys. Lett. B 66 375
[12] Greensite J 2011 An introduction to the confinement problem (Springer) p. 821
[13] Schwinger J 1962 Phys. Rev. 125 397
[14] Coleman S 1976 Ann. Phys. 101 239
[15] Wiese U 2013 Ann. Phys. (Leipzig) 525 777
[16] Bañuls M C, Blatt R, Catani J, et al. 2020 Euro. Phys. J. D 74 165
[17] Chen L, Zhu F, Tang Z and Gao C 2023 Emerg. Sci. Technol. 2 49
[18] Bauer C W, Davoudi Z, Balantekin A B, et al. 2023 PRX Quantum 4 027001
[19] Aidelsburger M, Barbiero L, Bermudez A, et al. 2022 Phil. Trans. R. Soc. A 380 20210064
[20] Halimeh J C and Hauke P 2020 Phys. Rev. Lett. 125 030503
[21] Halimeh J C, Kasper V and Hauke P 2020 arXiv:2009.07848 [condmat. quant-gas]
[22] Bender J, Emonts P and Cirac J I 2023 Phys. Rev. Res. 5 043128
[23] Klco N, Roggero A and Savage M J 2022 Rep. Prog. Phys. 85 064301
[24] Zhang W Y, Liu Y, Cheng Y, He M G, Wang H Y, Wang T Y, Zhu Z X, Su G X, Zhou Z Y, Zheng Y G, Sun H, Yang B, Hauke P, Zheng W, Halimeh J C, Yuan Z S and Pan J W 2025 Nat. Phys. 21 155
[25] Banerjee D, Dalmonte M, Müller M, Rico E, Stebler P, Wiese U J and Zoller P 2012 Phys. Rev. Lett. 109 175302
[26] Chandrasekharan S and Wiese U J 1997 Nucl. Phys. B 492 455
[27] Kühn S, Cirac J I and Bañuls M C 2014 Phys. Rev. A 90 042305
[28] Jackiw R and Rebbi C 1976 Phys. Rev. Lett. 37 172
[29] Batakis N and Lazarides G 1978 Phys. Rev. D 18 4710
[30] Hooft G T 1976 Phys. Rev. D 14 3432
[31] Halimeh J C, McCulloch I P, Yang B and Hauke P 2022 PRX Quantum 3 040316
[32] Tang Z, Zhu F, Luo Y F, Zheng W and Chen L 2024 Phys. Rev. A 110 033302
[33] Qi H Y and Zheng W 2024 Phys. Rev. Res. 6 013047
[34] Cheng Y, Liu S, Zheng W, Zhang P and Zhai H 2022 PRX Quantum 3 040317
[35] Surace F M, Mazza P P, Giudici G, Lerose A, Gambassi A and Dalmonte M 2020 Phys. Rev. X 10 021041
[36] Mil A, Zache T V, Hegde A, Xia A, Bhatt R P, Oberthaler M K, Hauke K, Berges J and Jendrzejewski F 2020 Science 367 1128
[37] Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J and Pan J W 2022 Science 377 311
[38] Wang H Y, Zhang W Y, Yao Z, Liu Y, Zhu Z H, Zheng Y G, Wang X K, Zhai H, Yuan Z S and Pan J W 2023 Phys. Rev. Lett. 131 050401
[39] Gao C, Liu J, Chang M, Pu H and Chen L 2022 Phys. Rev. Res. 4 L042018
[40] Gao C, Tang Z, Zhu F, Zhang Y, Pu H and Chen L 2023 Phys. Rev. B 107 104302
[1] Bayesian phase difference estimation based on single-photon projective measurement
Xu-Hao Yu(余旭豪), Ying Wei(韦颖), Ran Yang(杨然), Wen-Hui Song(宋文慧), Yingning Miao(缪应宁), Wei Zhou(周唯), Xinhui Li(李新慧), Xiaoqin Gao(高小钦), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2025, 34(7): 070305.
[2] Domain adaptation method inspired by quantum convolutional neural network
Chunhui Wu(武春辉), Junhao Pei(裴骏豪), Yihua Wu(吴逸华), Anqi Zhang(张安琪), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2025, 34(7): 070302.
[3] Progressive quantum algorithm for maximum independent set with quantum alternating operator ansatz
Xiao-Hui Ni(倪晓慧), Ling-Xiao Li(李凌霄), Yan-Qi Song(宋燕琪), Zheng-Ping Jin(金正平), Su-Juan Qin(秦素娟), and Fei Gao(高飞). Chin. Phys. B, 2025, 34(7): 070304.
[4] Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
Zilu Chen(陈子禄), Zhijin Guan(管致锦), Shuxian Zhao(赵书娴), and Xueyun Cheng(程学云). Chin. Phys. B, 2025, 34(5): 050305.
[5] Effect of pseudo-random number on the security of quantum key distribution protocol
Xiao-Liang Yang(杨晓亮), Yu-Qing Li(李毓擎), and Hong-Wei Li(李宏伟). Chin. Phys. B, 2025, 34(2): 020301.
[6] Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Kehan Wang(王柯涵), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2025, 34(1): 010305.
[7] Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms
Xiangxiang Sun(孙祥祥), Hao-Yue Qi(齐浩月), Pengfei Zhang(张鹏飞), and Wei Zheng(郑炜). Chin. Phys. B, 2024, 33(11): 110304.
[8] Multi-party semi-quantum private comparison protocol of size relation based on two-dimensional Bell states
Bing Wang(王冰), Li-Hua Gong(龚黎华), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2024, 33(11): 110303.
[9] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[10] A quantum blind signature scheme based on dense coding for non-entangled states
Ke Xing(邢柯), Ai-Han Yin(殷爱菡), and Yong-Qi Xue(薛勇奇). Chin. Phys. B, 2024, 33(6): 060309.
[11] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[12] Interplay between topology and localization on superconducting circuits
Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚). Chin. Phys. B, 2024, 33(6): 060311.
[13] Quafu-RL: The cloud quantum computers based quantum reinforcement learning
Yu-Xin Jin(靳羽欣), Hong-Ze Xu(许宏泽), Zheng-An Wang(王正安), Wei-Feng Zhuang(庄伟峰), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(曾进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050301.
[14] Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computers
Hong-Ze Xu(许宏泽), Wei-Feng Zhuang(庄伟峰), Zheng-An Wang(王正安), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yu-Xin Jin(靳羽欣), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(增进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050302.
[15] An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure
Kai Wu(吴凯), Rigui Zhou(周日贵), and Jia Luo(罗佳). Chin. Phys. B, 2024, 33(5): 050305.
No Suggested Reading articles found!