|
|
|
Bayesian phase difference estimation based on single-photon projective measurement |
| Xu-Hao Yu(余旭豪)†, Ying Wei(韦颖)†, Ran Yang(杨然), Wen-Hui Song(宋文慧), Yingning Miao(缪应宁), Wei Zhou(周唯), Xinhui Li(李新慧), Xiaoqin Gao(高小钦), Yan-Xiao Gong(龚彦晓)‡, and Shi-Ning Zhu(祝世宁) |
| National Laboratory of Solid State Microstructures, School of Physics, Jiangsu Physical Science Research Center, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China |
|
|
|
|
Abstract The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation, yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale quantum (NISQ) devices due to their excessive depth and circuit complexity. We demonstrate a high-precision phase difference estimation protocol based on the Bayesian phase difference estimation algorithm and single-photon projective measurement. The iterative framework of the algorithm, combined with the independence from controlled unitary operations, inherently mitigates circuit depth and complexity limitations. Through an experimental realization on the photonic system, we demonstrate high-precision estimation of diverse phase differences, showing root-mean-square errors (RMSE) below the standard quantum limit $\mathcal{O}(1/\sqrt{N})$ and reaching the Heisenberg scaling $\mathcal{O}(1/N)$ after a certain number of iterations. Our scheme provides a critical advantage in quantum resource-constrained scenarios, and advances practical implementations of quantum information tasks under realistic hardware constraints.
|
Received: 05 May 2025
Revised: 29 May 2025
Accepted manuscript online: 29 May 2025
|
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
| |
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
| |
42.50.Dv
|
(Quantum state engineering and measurements)
|
| |
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
| Fund: Project supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20233001 and BK20243060) and the National Natural Science Foundation of China (Grant No. 62288101). |
Corresponding Authors:
Yan-Xiao Gong
E-mail: gongyanxiao@nju.edu.cn
|
Cite this article:
Xu-Hao Yu(余旭豪), Ying Wei(韦颖), Ran Yang(杨然), Wen-Hui Song(宋文慧), Yingning Miao(缪应宁), Wei Zhou(周唯), Xinhui Li(李新慧), Xiaoqin Gao(高小钦), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁) Bayesian phase difference estimation based on single-photon projective measurement 2025 Chin. Phys. B 34 070305
|
[1] Zwierz M, Pérez-Delgado C A and Kok P 2010 Phys. Rev. Lett. 105 180402 [2] Pezzè L, Smerzi A, Oberthaler M K, Schmied R and Treutlein P 2018 Rev. Mod. Phys. 90 035005 [3] Reilly J T, Wilson J D, Jäger S B, Wilson C and Holland M J 2023 Phys. Rev. Lett. 131 150802 [4] Aspuru-Guzik A, Dutoi A D, Love P J and Head-Gordon M 2005 Science 309 1704 [5] Yang Y D, Li Y, Xu X S and Yuan X 2024 Phys. Rev. A 109 052416 [6] Dong C X, Yang Z S, Zeng J F and Hu J P 2023 Chin. Phys. B 32 070305 [7] Bauer B, Bravyi S, Motta M and Chan G K L 2020 Chem. Rev. 120 12685 [8] Cao Y D, Romero J, Olson J P, et al. 2019 Chem. Rev. 119 10856 [9] Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A and O’Brien J L 2014 Nat. Commun. 5 4213 [10] Quintino M T, Dong Q X X, Shimbo A, Soeda A and Murao M 2019 Phys. Rev. Lett. 123 210502 [11] Cho S M, Kim A, Choi D, Choi B S and Seo S H 2020 IEEE Access 8 213244 [12] Blunt N S, Caune L, Izsák R, Campbell E T and Holzmann N 2023 PRX Quantum 4 040341 [13] Chen Z L, Guan Z J, Zhao S X and Chen X Y 2025 Chin. Phys. B 34 050305 [14] Yang Z P, Zhang Y R, Li F L and Fan H 2024 Chin. Phys. B 33 090304 [15] Russo A E, Rudinger K M, Morrison B C A and Baczewski A D 2021 Phys. Rev. Lett. 126 210501 [16] Matsuzaki Y, Hakoshima H, Sugisaki K, Seki Y and Kawabata S 2021 Jpn. J. Appl. Phys. 60 SBBI02 [17] Fan J J, Ou Z Y and Zhang Z D 2024 Light Sci. Appl. 13 163 [18] Liu M, Zhu J Y, Zhao G H, Li Y X, Yang Y P, Gao K M and Wu K F 2025 Nat. Mater. 24 260 [19] Motta M, Sun C, Tan A T K, O’Rourke M J, Ye E, Minnich A J, Brandão F G S L and Chan G K L 2020 Nat. Phys. 16 205 [20] Preskill J 2018 Quantum 2 79 [21] Griffiths R B and Niu C S 1996 Phys. Rev. Lett. 76 3228 [22] Li J X 2024 Phys. Rev. A 109 032606 [23] Paesani S, Gentile A A, Santagati R, Wang J, Wiebe N, Tew D P, O’Brien J L and Thompson M G 2017 Phys. Rev. Lett. 118 100503 [24] Smith J G, Barnes C H W and Arvidsson-Shukur D R M 2024 Phys. Rev. A 109 042412 [25] Yamamoto K, Duffield S, Kikuchi Y and Ramo D M 2024 Phys. Rev. Res. 6 013221 [26] Dobšíček M, Johansson G, Shumeiko V andWendin G 2007 Phys. Rev. A 76 030306 [27] Wiebe N and Granade C 2016 Phys. Rev. Lett. 117 010503 [28] Sugisaki K, Sakai C, Toyota K, Sato K, Shiomi D and Takui T 2021 Phys. Chem. Chem. Phys. 23 20152 [29] O’Malley P J J, Babbush R, Kivlichan I D, et al. 2016 Phys. Rev. X 6 031007 [30] Santagati R, Wang J W, Gentile A A, et al. 2018 Sci. Adv. 4 eaap9646 [31] Nagata T, Okamoto R, O’Brien J L, Sasaki K and Takeuchi S 2007 Science 316 726 [32] Slussarenko S, Weston M M, Chrzanowski H M, Shalm L K, Verma V B, Nam S W and Pryde G F 2017 Nat. Photonics 11 700 [33] Pezzé L and Smerzi A 2009 Phys. Rev. Lett. 102 100401 [34] Nielsen J A H, Neergaard-Nielsen J S, Gehring T and Andersen U L 2023 Phys. Rev. Lett. 130 123603 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|