Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070305    DOI: 10.1088/1674-1056/adde33
RAPID COMMUNICATION Prev   Next  

Bayesian phase difference estimation based on single-photon projective measurement

Xu-Hao Yu(余旭豪)†, Ying Wei(韦颖)†, Ran Yang(杨然), Wen-Hui Song(宋文慧), Yingning Miao(缪应宁), Wei Zhou(周唯), Xinhui Li(李新慧), Xiaoqin Gao(高小钦), Yan-Xiao Gong(龚彦晓)‡, and Shi-Ning Zhu(祝世宁)
National Laboratory of Solid State Microstructures, School of Physics, Jiangsu Physical Science Research Center, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
Abstract  The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation, yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale quantum (NISQ) devices due to their excessive depth and circuit complexity. We demonstrate a high-precision phase difference estimation protocol based on the Bayesian phase difference estimation algorithm and single-photon projective measurement. The iterative framework of the algorithm, combined with the independence from controlled unitary operations, inherently mitigates circuit depth and complexity limitations. Through an experimental realization on the photonic system, we demonstrate high-precision estimation of diverse phase differences, showing root-mean-square errors (RMSE) below the standard quantum limit $\mathcal{O}(1/\sqrt{N})$ and reaching the Heisenberg scaling $\mathcal{O}(1/N)$ after a certain number of iterations. Our scheme provides a critical advantage in quantum resource-constrained scenarios, and advances practical implementations of quantum information tasks under realistic hardware constraints.
Keywords:  Bayesian phase difference estimation      single-photon projection measurement      Heisenberg limit      quantum information      quantum state engineering and measurements  
Received:  05 May 2025      Revised:  29 May 2025      Accepted manuscript online:  29 May 2025
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20233001 and BK20243060) and the National Natural Science Foundation of China (Grant No. 62288101).
Corresponding Authors:  Yan-Xiao Gong     E-mail:  gongyanxiao@nju.edu.cn

Cite this article: 

Xu-Hao Yu(余旭豪), Ying Wei(韦颖), Ran Yang(杨然), Wen-Hui Song(宋文慧), Yingning Miao(缪应宁), Wei Zhou(周唯), Xinhui Li(李新慧), Xiaoqin Gao(高小钦), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁) Bayesian phase difference estimation based on single-photon projective measurement 2025 Chin. Phys. B 34 070305

[1] Zwierz M, Pérez-Delgado C A and Kok P 2010 Phys. Rev. Lett. 105 180402
[2] Pezzè L, Smerzi A, Oberthaler M K, Schmied R and Treutlein P 2018 Rev. Mod. Phys. 90 035005
[3] Reilly J T, Wilson J D, Jäger S B, Wilson C and Holland M J 2023 Phys. Rev. Lett. 131 150802
[4] Aspuru-Guzik A, Dutoi A D, Love P J and Head-Gordon M 2005 Science 309 1704
[5] Yang Y D, Li Y, Xu X S and Yuan X 2024 Phys. Rev. A 109 052416
[6] Dong C X, Yang Z S, Zeng J F and Hu J P 2023 Chin. Phys. B 32 070305
[7] Bauer B, Bravyi S, Motta M and Chan G K L 2020 Chem. Rev. 120 12685
[8] Cao Y D, Romero J, Olson J P, et al. 2019 Chem. Rev. 119 10856
[9] Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A and O’Brien J L 2014 Nat. Commun. 5 4213
[10] Quintino M T, Dong Q X X, Shimbo A, Soeda A and Murao M 2019 Phys. Rev. Lett. 123 210502
[11] Cho S M, Kim A, Choi D, Choi B S and Seo S H 2020 IEEE Access 8 213244
[12] Blunt N S, Caune L, Izsák R, Campbell E T and Holzmann N 2023 PRX Quantum 4 040341
[13] Chen Z L, Guan Z J, Zhao S X and Chen X Y 2025 Chin. Phys. B 34 050305
[14] Yang Z P, Zhang Y R, Li F L and Fan H 2024 Chin. Phys. B 33 090304
[15] Russo A E, Rudinger K M, Morrison B C A and Baczewski A D 2021 Phys. Rev. Lett. 126 210501
[16] Matsuzaki Y, Hakoshima H, Sugisaki K, Seki Y and Kawabata S 2021 Jpn. J. Appl. Phys. 60 SBBI02
[17] Fan J J, Ou Z Y and Zhang Z D 2024 Light Sci. Appl. 13 163
[18] Liu M, Zhu J Y, Zhao G H, Li Y X, Yang Y P, Gao K M and Wu K F 2025 Nat. Mater. 24 260
[19] Motta M, Sun C, Tan A T K, O’Rourke M J, Ye E, Minnich A J, Brandão F G S L and Chan G K L 2020 Nat. Phys. 16 205
[20] Preskill J 2018 Quantum 2 79
[21] Griffiths R B and Niu C S 1996 Phys. Rev. Lett. 76 3228
[22] Li J X 2024 Phys. Rev. A 109 032606
[23] Paesani S, Gentile A A, Santagati R, Wang J, Wiebe N, Tew D P, O’Brien J L and Thompson M G 2017 Phys. Rev. Lett. 118 100503
[24] Smith J G, Barnes C H W and Arvidsson-Shukur D R M 2024 Phys. Rev. A 109 042412
[25] Yamamoto K, Duffield S, Kikuchi Y and Ramo D M 2024 Phys. Rev. Res. 6 013221
[26] Dobšíček M, Johansson G, Shumeiko V andWendin G 2007 Phys. Rev. A 76 030306
[27] Wiebe N and Granade C 2016 Phys. Rev. Lett. 117 010503
[28] Sugisaki K, Sakai C, Toyota K, Sato K, Shiomi D and Takui T 2021 Phys. Chem. Chem. Phys. 23 20152
[29] O’Malley P J J, Babbush R, Kivlichan I D, et al. 2016 Phys. Rev. X 6 031007
[30] Santagati R, Wang J W, Gentile A A, et al. 2018 Sci. Adv. 4 eaap9646
[31] Nagata T, Okamoto R, O’Brien J L, Sasaki K and Takeuchi S 2007 Science 316 726
[32] Slussarenko S, Weston M M, Chrzanowski H M, Shalm L K, Verma V B, Nam S W and Pryde G F 2017 Nat. Photonics 11 700
[33] Pezzé L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
[34] Nielsen J A H, Neergaard-Nielsen J S, Gehring T and Andersen U L 2023 Phys. Rev. Lett. 130 123603
[1] Optimal convex approximations of qubit states based on l1-norm of coherence
Li-Qiang Zhang(张立强), Yan-Dong Du(杜彦东), and Chang-Shui Yu(于长水). Chin. Phys. B, 2025, 34(8): 080302.
[2] Coherence-protected operations in hybrid superconducting circuit-magnon system
Le-Tian Zhu(朱乐天), Xing-Yu Zhu(朱行宇), Zhu-Cheng Yue(岳祝诚), Tao Tu(涂涛), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2025, 34(3): 030302.
[3] Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states
Jian-Dong Zhang(张建东), Chuang Li(李闯), Lili Hou(侯丽丽), and Shuai Wang(王帅). Chin. Phys. B, 2025, 34(1): 010304.
[4] Established conversions for hybrid entangled states assisted by error-predicted parity-discriminated devices
Fang-Fang Du(杜芳芳), Zhi-Guo Fan(范志国), Xue-Mei Ren(任雪梅), Ming Ma(马明), and Wen-Yao Liu(刘文耀). Chin. Phys. B, 2025, 34(1): 010303.
[5] Enhanced measurement precision with continuous interrogation during dynamical decoupling
Jun Zhang(张军), Peng Du(杜鹏), Lei Jing(敬雷), Peng Xu(徐鹏), Li You(尤力), and Wenxian Zhang(张文献). Chin. Phys. B, 2024, 33(3): 030301.
[6] Algorithm for evaluating distance-based entanglement measures
Yixuan Hu(胡奕轩), Ye-Chao Liu(刘烨超), and Jiangwei Shang(尚江伟). Chin. Phys. B, 2023, 32(8): 080307.
[7] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[8] One-shot detection limits of time-alignment two-photon illumination radar
Wen-Long Gao(高文珑), Lu-Ping Xu(许录平), Hua Zhang(张华), Bo Yan(阎博), Peng-Xian Li(李芃鲜), and Gui-Ting Hu(胡桂廷). Chin. Phys. B, 2023, 32(5): 050304.
[9] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[10] Genuine Einstein-Podolsky-Rosen steering of generalized three-qubit states via unsharp measurements
Yuyu Chen(陈玉玉), Fenzhuo Guo(郭奋卓), Shihui Wei(魏士慧), and Qiaoyan Wen(温巧燕). Chin. Phys. B, 2023, 32(4): 040309.
[11] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[12] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[13] Long-range interacting Stark many-body probes with super-Heisenberg precision
Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat. Chin. Phys. B, 2023, 32(10): 100313.
[14] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[15] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
No Suggested Reading articles found!