Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 120303    DOI: 10.1088/1674-1056/addcc2
GENERAL Prev   Next  

Efficient fault-tolerant circuit for preparing quantum uniform superposition states via quantum measurement

Xiang-Qun Fu(付向群), Tian-Ci Tian(田天赐), Hong-Wei Li(李宏伟), Jian-Hong Shi(史建红), Xiao-Liang Yang(杨晓亮), Tan Li(李坦), and Wan-Su Bao(鲍皖苏)
Henan Key Laboratory of Quantum Information and Cryptography, Information Engineering University, Zhengzhou 450004, China
Abstract  Preparing quantum superposition states is a crucial step in realizing quantum algorithms, which demands substantial resources. In this paper, we propose a new method for preparing quantum uniform superposition states via quantum measurement, and design the bitwise implementation circuit, which only contains Hadamard, CNOT, and π/8 phase gates. Compared to the Shukla-Vedula method, the number of quantum gates required by both methods scales the same, while, the new method offers stronger fault tolerance, and the ancillary qubits employed during the implementation process can be reused, making it more suitable for implementation on real quantum computers. As an application, we provide the circuit for Shor’s discrete logarithm quantum algorithm, based on the new method, demonstrating its technical advantage for implementation of quantum algorithms.
Keywords:  quantum superposition state      quantum measurement      quantum computing algorithm      quantum circuit  
Received:  10 April 2025      Revised:  22 May 2025      Accepted manuscript online:  23 May 2025
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Sq (Semiclassical theories and applications)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2020YFA0309702), the National Natural Science Foundation of China (Grant No. 61502526), NSAF (Grant No. U2130205), and the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410532 and 252300421818).
Corresponding Authors:  Tan Li, Wan-Su Bao     E-mail:  litanzh@sina.com;bws@qiclab.cn

Cite this article: 

Xiang-Qun Fu(付向群), Tian-Ci Tian(田天赐), Hong-Wei Li(李宏伟), Jian-Hong Shi(史建红), Xiao-Liang Yang(杨晓亮), Tan Li(李坦), and Wan-Su Bao(鲍皖苏) Efficient fault-tolerant circuit for preparing quantum uniform superposition states via quantum measurement 2025 Chin. Phys. B 34 120303

[1] Deutsch D 1985 Proc. R. Soc. Lond. A 400 97
[2] Shor P W 1997 SIAM J. Comput. 26 1484
[3] Grover L K 1996 Proceedings of the 28th ACM Symposium on Theory of Computation, May 22–24, 1996, Philadelphia Pennsylvania, USA, pp. 212–219
[4] Li T, Zhang S, Fu X Q, Wang X, Wang Y, Lin J and Bao W S 2019 Chin. Phys. B 28 120301
[5] Bhattacharya N, van Linden van den Heuvell H B and Spreeuw R J C 2002 Phys. Rev. Lett. 88 137901
[6] Zhang H Y, Wang S X, Liu X J, Shen Y T and Wang Y K 2024 Chin. Phys. B 33 020310
[7] Pan S J, Wan L C, Liu H L, Wu Y S, Qin S J, Wen Q Y and Gao F 2022 Chin. Phys. B 31 060304
[8] Liu W W, Li H C and Yang R C 2009 Chin. Phys. B 18 23
[9] Pokharel B and Lidar D A 2024 NPJ Quantum Inf. 10 23
[10] Sun X M, Tian G J, Yang S, Yuan P and Zhang S Y 2023 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42 3301
[11] Zhang X M, Li T Y and Yuan X 2022 Phys. Rev. Lett. 129 230504
[12] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information, 2nd edn. (Cambridge: Cambridge University Press) pp. 217–219
[13] Zylberman J and Debbasch F 2024 Phys. Rev. A 109 042401
[14] Iaconis J, Johri S and Zhu E Y 2024 NPJ Quantum Inf. 10 15
[15] Lemieux J, Lostaglio M, Pallister S, Pol W, Seetharam K, Sim S and Sahinoglu B 2024 arXiv: 2405.11436[quant-ph]
[16] Bausch J 2022 Quantum 6 773
[17] Wang S B, Wang Z M, Cui G L, Shi S S, Shang R M, Fan L X, Li W D, Wei Z Q and Gu Y J 2021 Quantum Inf. Process. 20 270
[18] Sanders Y R, Low G H, Scherer A and Berry D W 2019 Phys. Rev. Lett. 122 020502
[19] McArdle S, Gilyen A and Berta M 2022 arXiv: 2210.14892[quant-ph]
[20] Rosenkranz M, Brunner E, Marin-Sanchez G, Fitzpatrick N, Dilkes S, Tang Y, Kikuchi Y and Benedetti M 2025 Quantum 9 1703
[21] de Veras T M L, da Silva L D and da Silva A J 2022 Quantum Inf. Process. 21 204
[22] Gleinig N and Hoefler T 2021 Proceedings of the 58th ACM/IEEE Design Automation Conference (DAC), December 5–9, 2021, San Francisco, USA, p. 433–438
[23] Girolami D 2019 Phys. Rev. Lett. 122 010505
[24] Zhang X M, Yung M H and Yuan X 2021 Phys. Rev. Res. 3 043200
[25] Griffiths R B and Niu C S 1996 Phys. Rev. Lett. 76 3228
[26] Scully M and Zubairy M 2002 Phys. Rev. A 65 052324
[27] Dong L, Xiu X M, Shen H Z, Gao Y J and Yi X X 2013 J. Opt. Soc. Am. B 30 2765
[28] Wang H F, Zhang S, Zhu A D and Yeon K H 2012 J. Opt. Soc. Am. B 29 1078
[29] Weinstein Y S, Pravia M A, Fortunato E M, Lloyd S and Cory D G 2001 Phys. Rev. Lett. 86 1889
[30] Kitaev A Y 1995 arXiv: quant-ph/9511026v1[quant-ph]
[31] Hales L and Hallgren S 2000 Proceedings of the 41st Annual Symposium on Foundations of Computer Science, November 12–14, 2000, Redondo Beach, USA, pp. 515–525
[32] Proos J and Zalka C 2003 Quantum Inf. Comput. 3 317
[33] Childs A M and Dam W V 2008 arXiv:0812.0380v1[quant-ph]
[34] Fu X Q, Bao W S, Li F D and Zhang Y C 2014 Chin. Phys. B 23 020306
[35] Shukla A and Vedula P 2024 Quantum Inf. Process. 23 38
[36] Dawson C M and Nielsen M A 2006 Quantum Inf. Comput. 6 81
[37] Meter R V and Itoh K M 2005 Phys. Rev. A 71 052320
[38] Pavlidis A and Gizopoulos D 2014 Quantum Inf. Comput. 14 649
[1] A low-noise and high-stability DC source for superconducting quantum circuits
Daxiong Sun(孙大雄), Jiawei Zhang(张家蔚), Peisheng Huang(黄培生), Yubin Zhang(张玉斌), Zechen Guo(郭泽臣), Tingjin Chen(陈庭槿), Rui Wang(王睿), Xuandong Sun(孙炫东), Jiajian Zhang(张家健), Wenhui Huang(黄文辉), Jiawei Qiu(邱嘉威), Ji Chu(储继), Ziyu Tao(陶子予), Weijie Guo(郭伟杰), Xiayu Linpeng(林彭夏雨), Ji Jiang(蒋骥), Jingjing Niu(牛晶晶), Youpeng Zhong(钟有鹏), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2025, 34(9): 090303.
[2] Effect of quantum measurement errors on witnessing network topology
Shu-Yuan Yang(杨舒媛), Kan He(贺衎), and Ming-Xing Luo(罗明星). Chin. Phys. B, 2025, 34(9): 090302.
[3] Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
Zilu Chen(陈子禄), Zhijin Guan(管致锦), Shuxian Zhao(赵书娴), and Xueyun Cheng(程学云). Chin. Phys. B, 2025, 34(5): 050305.
[4] Efficient characterization of the coupler spectrum via sideband driving in superconducting qubits
Jianwen Xu(徐建文), Ruonan Guo(郭若男), Wen Zheng(郑文), Yu Zhang(张钰), Jie Zhao(赵杰), Zhiguo Huang(黄智国), Jingwei Wen(闻经纬), Runqing Zhang(张润清), Shaoxiong Li(李邵雄), Xinsheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2025, 34(11): 110302.
[5] In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits
Hao-Ran Tao(陶浩然), Lei Du(杜磊), Liang-Liang Guo(郭亮亮), Yong Chen(陈勇), Hai-Feng Zhang(张海峰), Xiao-Yan Yang(杨小燕), Guo-Liang Xu(徐国良), Chi Zhang(张 驰), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090310.
[6] New construction of mutually unbiased bases for odd-dimensional state space
Chenghong Wang(王成红), Kun Wang(王昆), and Zhu-Jun Zheng(郑驻军). Chin. Phys. B, 2024, 33(8): 080304.
[7] Quantum circuit-based proxy blind signatures: A novel approach and experimental evaluation on the IBM quantum cloud platform
Xiaoping Lou(娄小平), Huiru Zan(昝慧茹), and Xuejiao Xu(徐雪娇). Chin. Phys. B, 2024, 33(5): 050307.
[8] Integer multiple quantum image scaling based on NEQR and bicubic interpolation
Shuo Cai(蔡硕), Ri-Gui Zhou(周日贵), Jia Luo(罗佳), and Si-Zhe Chen(陈思哲). Chin. Phys. B, 2024, 33(4): 040302.
[9] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[10] Proposal for sequential Stern-Gerlach experiment with programmable quantum processors
Meng-Jun Hu(胡孟军), Haixing Miao(缪海兴), and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2024, 33(2): 020303.
[11] Automatic architecture design for distributed quantum computing
Ting-Yu Luo(骆挺宇), Yu-Zhen Zheng(郑宇真), Xiang Fu(付祥), and Yu-Xin Deng(邓玉欣). Chin. Phys. B, 2024, 33(12): 120302.
[12] Sharing quantum nonlocality in the noisy scenario
Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎). Chin. Phys. B, 2024, 33(1): 010302.
[13] Anomalous non-Hermitian dynamical phenomenon on the quantum circuit
Chenxiao Dong(董陈潇), Zhesen Yang(杨哲森), Jinfeng Zeng(曾进峰), and Jiangping Hu(胡江平). Chin. Phys. B, 2023, 32(7): 070305.
[14] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[15] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
No Suggested Reading articles found!