Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060311    DOI: 10.1088/1674-1056/ad342c
GENERAL Prev   Next  

Interplay between topology and localization on superconducting circuits

Xin Guan(关欣)1,†, Bingyan Huo(霍炳燕)1, and Gang Chen(陈刚)2,3,4
1 Department of Materials and Chemical Engineering, Taiyuan University, Taiyuan 030032, China;
2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
4 School of Physics, Zhengzhou University, Zhengzhou 450001, China
Abstract  Topological insulators occupy a prominent position in the realm of condensed matter physics. Nevertheless, the presence of strong disorder has the potential to disrupt the integrity of topological states, leading to the localization of all states. This study delves into the intricate interplay between topology and localization within the one-dimensional Su-Schrieffer-Heeger (SSH) model, which incorporates controllable off-diagonal quasi-periodic modulations on superconducting circuits. Through the application of external alternating current (ac) magnetic fluxes, each transmon undergoes controlled driving, enabling independent tuning of all coupling strengths. Within a framework of this model, we construct comprehensive phase diagrams delineating regions characterized by extended topologically nontrivial states, critical localization, and co-existing topological and critical localization phases. The paper also addresses the dynamics of qubit excitations, elucidating distinct quantum state transfers resulting from the intricate interplay between topology and localization. Additionally, we propose a method for detecting diverse quantum phases utilizing existing experimental setups.
Keywords:  topology      localization      superconducting circuits  
Received:  22 December 2023      Revised:  09 March 2024      Accepted manuscript online:  15 March 2024
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  73.43.-f (Quantum Hall effects)  
  85.25.Cp (Josephson devices)  
  71.10.-w (Theories and models of many-electron systems)  
Fund: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 202103021223010).
Corresponding Authors:  Xin Guan     E-mail:  guanxin810712@163.com

Cite this article: 

Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚) Interplay between topology and localization on superconducting circuits 2024 Chin. Phys. B 33 060311

[1] Buluta I, Ashhab S and Nori F 2011 Rep. Phys. 74 104401
[2] Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, Haoran Q, Yangsen Y, Fusheng C, Chong Y, Jiale Y, Daojin F, Dachao W, Hong S, Hui D, Hao R, Kaili Z, Sirui C, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Bastidas V M, Kae N, Munro W J, Huo Y H, Lu C Y, Peng C Z, Zhu X and Pan J W 2021 Science 372 948
[3] Wendin G 2017 Rep. Phys. 80 106001
[4] Blais A, Girvin S M and Oliver W D 2020 Nat. Phys. 16 247
[5] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[6] Zhang X, Kim E, Mark D K, Choi S and Painter O 2023 Science 379 278
[7] Ying C, Cheng B, Zhao Y, Huang H L, Zhang Y N, Gong M, Wu Y, Wang S, Liang F, Lin J, Yu X, Hui D, Hao R, Cheng Zh P, Man H Y, Xiao B Z and Pan J W 2023 Phys. Rev. Lett. 130 110601
[8] Wang D W, Song C, Feng W, Cai H, Xu D, Deng H, Li H, Zheng D, Zhu X, Wang H, Zhu S Y and Scully O 2019 Nat. Phys. 15 382
[9] Tan X, Zhang D W, Liu Q, Xue G, Yu H F, Zhu Y Q, Yan H, Zhu S L and Yu Y 2018 Phys. Rev. Lett. 120 130503
[10] Tan X, Zhao Y, Liu Q, Xue G, Yu H F, Wang Z and Yu Y 2019 Phys. Rev. Lett. 122 010501
[11] Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng Z C, Xia K, Deng H, Rong H, You Q, Nori J F, Fan H, Zhu X and Pan J W 2019 Science 364 753
[12] Kaur K, Sépulcre T, Roch N, Snyman I, Florens S and Bera S 2021 Phys. Rev. Lett. 127 237702
[13] Dborin J, Wimalaweera V, Barratt F, Ostby E, O’Brien T E and Green A G 2022 Nat. Commun. 13 5977
[14] Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Appl. 10 054009
[15] Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y, Xue Z Y, Yin Z Q, Jia S and Sun L 2019 Phys. Rev. Lett. 123 080501
[16] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[17] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[18] Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H and Shvets G 2013 Nat. Mater. 12 233
[19] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196
[20] Maciejko J and Fiete G A 2015 Nat. Phys. 11 385
[21] Rachel S 2018 Rep. Phys. 81 116501
[22] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346
[23] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[24] Rudner M S and Lindner N H 2020 Nat. Rev. Phys. 2 229
[25] Biesenthal T, Maczewsky L J, Yang Z, Kremer M, Segev M, Szameit A and Heinrich M 2022 Science 376 1114
[26] Li J, Chu R L, Jain J K and Shen S Q 2009 Phys. Rev. Lett. 102 136806
[27] Groth C, Wimmer M, Akhmerov A, Tworzyd lo J and Beenakker C 2009 Phys. Rev. Lett. 103 196805
[28] Guo H M, Rosenberg G, Refael G and Franz M 2010 Phys. Rev. Lett. 105 216601
[29] Stützer S, Plotnik Y, Lumer Y, Titum P, Lindner N H, Segev M, Rechtsman M C and Szameit A 2018 Nature 560 461
[30] Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L and Gadway B 2018 Science 362 929
[31] Zhang W, Zou D, Pei Q, He W, Bao J, Sun H and Zhang X 2011 Phys. Rev. Lett. 126 146802
[32] Sokoloff J 1985 Phys. Rep. 126 189
[33] Thouless D 1988 Phys. Rev. Lett. 61 2141
[34] Roushan P, Neill C, Tangpanitanon J, Bastidas V M, Megrant A, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A, Foxen B, Giustina M, Jeffrey E, Kelly J, Lucero E, Mutus J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Neven H, Angelakis G and Martinis D J 2017 Science 358 1175
[35] An F A, Padavić K, Meier E J, Hegde S, Ganeshan S, Pixley J, Vishveshwara S and Gadway B 2021 Phys. Rev. Lett. 126 040603
[36] Su W, Schrieffer J and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[37] Marchand D, Filippis G D, Cataudella V, Berciu M, Nagaosa N, Prokof’Ev N, Mishchenko A and Stamp P 2010 Phys. Rev. Lett. 105 266605
[38] Meier E J, An F A and Gadway B 2016 Nat. Commun. 7 13986
[39] Xing B, Chiu W T, Poletti D, Scalettar R T and Batrouni G 2021 Phys. Rev. Lett. 126 017601
[40] Kiczynski M, Gorman S, Geng H, Donnelly M, Chung Y, He Y, Keizer J and Simmons M 2022 Nature 606 694
[41] Youssefi A, Kono S, Bancora A, Chegnizadeh M, Pan J, Vovk T and Kippenberg T J 2022 Nature 612 666
[42] Wang Z, Wang X, Hu Z, Bongiovanni D, Jukic D, Tang L, Song D, Morandotti R, Chen Z and Buljan H 2023 Nat. Phys. 19 992
[43] Koch J, Terri M Y, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[44] Ye Y, Ge Z Y, Wu Y, Wang S, Gong M, Zhang Y R, Zhu Q, Yang R, Li S, Liang F, Lin J, Xu Y, Guo C, Sun L, Cheng C, Ma N, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X and Pan J W 2019 Phys. Rev. Lett. 123 050502
[45] Mondragon S I, Hughes T L, Song J and Prodan E 2014 Phys. Rev. Lett. 113 046802
[46] Thouless D J 1983 Phys. Rev. B 28 4272
[47] Chang I, Ikezawa K and Kohmoto M 1997 Phys. Rev. B 55 12971
[48] Liu F, Ghosh S and Chong Y D 2015 Phys. Rev. B 91 014108
[49] Wang Y, Cheng C, Liu X J and Yu D 2021 Phys. Rev. Lett. 126 080602
[50] Meier E J, An F A and Gadway B 2016 Nat. Commun. 7 13986
[51] Cardano F, D’Errico A, Dauphin A, Maffei M, Piccirillo B, Lisio D C, Filippis G D, Cataudella V, Santamato E, Marrucci L, Lewenstein M and Massignan P 2017 Nat. Commun. 8 15516
[1] Orbital angular momentum conversion of acoustic vortex beams via planar lattice coupling
Qingbang Han(韩庆邦), Zhipeng Liu(刘志鹏), Cheng Yin(殷澄), Simeng Wu(吴思梦), Yinlong Luo(罗寅龙), Zixin Yang(杨子鑫), Xiuyang Pang(庞修洋), Yiqiu Wang(王溢秋), Xuefen Kan(阚雪芬), Yuqiu Zhang(张雨秋), Qiang Yu(俞强), and Jian Wu(吴坚). Chin. Phys. B, 2024, 33(9): 094301.
[2] Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals
Xin-Xin Xu(许欣欣), Zi-Ming Wang(王梓名), Dong-Hui Xu(许东辉), and Chui-Zhen Chen(陈垂针). Chin. Phys. B, 2024, 33(6): 067801.
[3] Dynamical localization in a non-Hermitian Floquet synthetic system
Han Ke(可汗), Jiaming Zhang(张嘉明), Liang Huo(霍良), and Wen-Lei Zhao(赵文垒). Chin. Phys. B, 2024, 33(5): 050507.
[4] Manipulation of internal blockage in triangular triple quantum dot
Yue Qi(齐月) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2024, 33(5): 057301.
[5] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[6] Localization effect in single crystal of RuAs2
Zhe-Kai Yi(易哲铠), Qi Liu(刘琪), Shuang-Kui Guang(光双魁), Sheng Xu(徐升), Xiao-Yu Yue(岳小宇), Hui Liang(梁慧), Na Li(李娜), Ying Zhou(周颖), Dan-Dan Wu(吴丹丹), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), Peng Cheng(程鹏), Tian-Long Xia(夏天龙), Xue-Feng Sun(孙学峰), and Yi-Yan Wang(王义炎). Chin. Phys. B, 2024, 33(4): 047501.
[7] Source localization in signed networks with effective distance
Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙). Chin. Phys. B, 2024, 33(2): 028902.
[8] Essential proteins identification method based on four-order distances and subcellular localization information
Pengli Lu(卢鹏丽), Yu Zhong(钟雨), and Peishi Yang(杨培实). Chin. Phys. B, 2024, 33(1): 018903.
[9] Optimization of communication topology for persistent formation in case of communication faults
Guo-Qiang Wang(王国强), He Luo(罗贺), Xiao-Xuan Hu(胡笑旋), and Jian-Wei Tai(台建玮). Chin. Phys. B, 2023, 32(7): 078901.
[10] Periodic electron oscillation in coupled two-dimensional lattices
Yan-Yan Lu(陆艳艳), Chao Wang(王超), Jin-Yi Jiang(将金益), Jie Liu(刘洁), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2023, 32(7): 070306.
[11] Size effect on light propagation modulation near band edges in one-dimensional periodic structures
Yang Tang(唐洋), Jiajun Wang(王佳俊), Xingqi Zhao(赵星棋), Tongyu Li(李同宇), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(5): 054201.
[12] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[13] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[14] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[15] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
No Suggested Reading articles found!