Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060309    DOI: 10.1088/1674-1056/ad2bed
GENERAL Prev   Next  

A quantum blind signature scheme based on dense coding for non-entangled states

Ke Xing(邢柯)†, Ai-Han Yin(殷爱菡)‡, and Yong-Qi Xue(薛勇奇)
Department of Information Engineering, East China Jiaotong University, Nanchang 330013, China
Abstract  In some schemes, quantum blind signatures require the use of difficult-to-prepare multiparticle entangled states. By considering the communication overhead, quantum operation complexity, verification efficiency and other relevant factors in practical situations, this article proposes a non-entangled quantum blind signature scheme based on dense encoding. The information owner utilizes dense encoding and hash functions to blind the information while reducing the use of quantum resources. After receiving particles, the signer encrypts the message using a one-way function and performs a Hadamard gate operation on the selected single photon to generate the signature. Then the verifier performs a Hadamard gate inverse operation on the signature and combines it with the encoding rules to restore the message and complete the verification. Compared with some typical quantum blind signature protocols, this protocol has strong blindness in privacy protection, and higher flexibility in scalability and application. The signer can adjust the signature operation according to the actual situation, which greatly simplifies the complexity of the signature. By simultaneously utilizing the secondary distribution and rearrangement of non-entangled quantum states, a non-entangled quantum state representation of three bits of classical information is achieved, reducing the use of a large amount of quantum resources and lowering implementation costs. This improves both signature verification efficiency and communication efficiency while, at the same time, this scheme meets the requirements of unforgeability, non-repudiation, and prevention of information leakage.
Keywords:  quantum blind signature      dense coding      non-entanglement      Hadamard gate  
Received:  20 October 2023      Revised:  31 January 2024      Accepted manuscript online:  22 February 2024
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61762039).
Corresponding Authors:  Ke Xing, Ai-Han Yin     E-mail:  1400373041@qq.com;yinaihan@126.com

Cite this article: 

Ke Xing(邢柯), Ai-Han Yin(殷爱菡), and Yong-Qi Xue(薛勇奇) A quantum blind signature scheme based on dense coding for non-entangled states 2024 Chin. Phys. B 33 060309

[1] Amjad M and Raju 2018 Journal of Trend in Scientific Research and Development 2 482
[2] Xin X J, Ding L, Li C Y, Sang Y X, Yang Q L and Li F G 2021 Quantum Information Processing 21 1
[3] Chen F L, Wang Z H and Hu Y M 2019 Entropy 21 336
[4] Shang T, Pei Z, Chen R and Liu J 2019 Computers, Materials & Continua 59 149
[5] hen F L and Han Z F 2016 International Journal of Quantum Information 14 1650041
[6] Fan L and Cao C 2019 International Journal of Quantum Information 17 1950007
[7] Tiliwalidi K, Zhang J Z and Xie S C 2019 International Journal of Theoretical Physics. 58 3510
[8] Feng X N, Wu H Y, Zhou X L and Yao Y 2022 Quantum Information Processing 22 5
[9] Wen X J, Niu X M, Ji L P and Tian Y 2009 Opt. Commun. 282 666
[10] Xu R, Huang L S, Yang W and He L B 2011 Opt. Commun. 284 3654
[11] Xu G B and Zhang K J 2015 Quantum Information Processing 14 2577
[12] Guo X, Zhang J Z and Xie S C 2018 International Journal of Theoretical Physics 57 2657
[13] He Y F and Ma W P 2021 Modern Physics Letters B 35 2150195
[14] Lei L and Zhi L 2022 Information Sciences 585 232
[15] Zhou Y H, Qin S F, Shi W M and Yang Y G 2022 Quantum Information Processing 21 303
[16] Gou X L, Shi R H, Shi Z and Li K C 2021 Modern Physics Letters A 36 2150040
[17] Xiong Z H and Yin A H 2022 Quantum Information Processing 21 140
[18] Chen B C and Yan L L 2021 International Journal of Theoretical Physics 60 4006
[19] Xia C Y, Li H F and Hu J 2021 Euro. Phys. J. Plus 136 633
[20] Tian Y, Chen H, Ji S F, Han Z P, Lian H G and Wen X J 2014 Optical and Quantum Electronics 46 769
[21] Zhang W, Qiu D W, Zou X F and Mateus P 2017 Quantum Information Processing 16 150
[22] Liang X Q, Wu Y L, Zhang Y H, Wang S S and Xu G B 2019 International Journal of Theoretical Physics 58 31
[23] Liu G, Ma W P, Cao H and Lyu L D 2019 International Journal of Theoretical Physics 58 1999
[24] Zheng T, Chang Y and Zhang S B 2020 Quantum Information Processing 19 163
[25] Li X Y, Chang Y, Zhang S B, Dai J Q and Zheng T 2020 International Journal of Theoretical Physics 59 2059
[26] Niu X F, Ma W P, Chen B Q, Liu G and Wang Q Z 2020 International Journal of Theoretical Physics 59 1121
[27] Zhu H F, Zhang Y L and Li Z X 2021 International Journal of Theoretical Physics. 60 2311
[28] Xin X J, He Q Q, Wang Z, Yang Q L and Li F G 2019 Modern Physics Letters A 34 1950166
[29] Wang M Q, Wang X and Zhan T 2018 Quantum Information Processing 17 275
[30] Aili M and Abulizi A 2019 International Journal of Theoretical Physics 58 364
[31] He W T, Wang J, Zhang T T, Alzahrani F, Hobiny A, Alsaedi A, Hayat T and Deng F G 2019 International Journal of Theoretical Physics 58 2834
[32] Meher N 2020 J. Phys. B: Atom. Mol. Opt. Phys. 53 065502
[1] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[2] Effects of intrinsic decoherence on various correlations and quantum dense coding in a two superconducting charge qubit system
Wang Fei (王飞), Maimaitiyiming-Tusun (麦麦提依明·吐孙), Parouke-Paerhati (帕肉克·帕尔哈提), Ahmad-Abliz (艾合买提·阿不力孜). Chin. Phys. B, 2015, 24(9): 090307.
[3] Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities
Sun Qian (孙倩), He Juan (何娟), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(6): 060305.
[4] Applications of quantum Fourier transform in photon-added coherent state
Ren Gang (任刚), Du Jian-Ming (杜建明), Yu Hai-Jun (余海军). Chin. Phys. B, 2014, 23(2): 024207.
[5] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(5): 050309.
[6] Quantum superdense coding based on hyperentanglement
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Chen Li (陈丽), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2012, 21(8): 080303.
[7] A realizable multi-bit dense coding scheme with an Einstein–Podolsky–Rosen channel
Guo Qi (郭奇), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿), Yeon Kyu-Hwang. Chin. Phys. B, 2012, 21(10): 100301.
[8] Dense coding with a two-qubit Heisenberg XYZ chain under the influence of phase decoherence
Sulayiman Simayi(苏拉依曼·司马义), Aihemaiti Abulizi(艾合买提·阿不力孜), Mushajiang Yaermaimaiti(木沙江·亚尔买买提), Cai Jiang-Tao(蔡江涛), and Qiao Pan-Pan(乔盼盼). Chin. Phys. B, 2011, 20(5): 050305.
[9] Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state
Wang Mei-Yu(王美玉) and Yan Feng-Li(闫凤利) . Chin. Phys. B, 2011, 20(12): 120309.
[10] A simple scheme for implementing four-atom quantum dense coding in cavity QED
Zheng Xiao-Juan(郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成). Chin. Phys. B, 2010, 19(1): 010309.
[11] Quantum superdense coding via cavity-assisted interactions
Pan Guo-Zhu(潘国柱), Yang Ming(杨名), and Cao Zhuo-Liang(曹卓良). Chin. Phys. B, 2009, 18(6): 2319-2323.
[12] High-capacity three-party quantum secret sharing with superdense coding
Gu Bin(顾斌), Li Chuan-Qi(李传起), Xu Fei(徐飞), and Chen Yu-Lin(陈玉林). Chin. Phys. B, 2009, 18(11): 4690-4694.
[13] Scheme for implementing quantum dense coding with W-class state in cavity QED
He Juan(何娟), Ye Liu(叶柳), and Ni Zhi-Xiang(倪致祥). Chin. Phys. B, 2008, 17(5): 1597-1600.
[14] Scheme for implementing quantum dense coding with four-particle decoherence-free states in an ion trap
Zheng Xiao-Juan(郑小娟), Cao Shuai(曹帅), Fang Mao-Fa(方卯发), and Liao Xiang-Ping(廖湘萍). Chin. Phys. B, 2008, 17(2): 431-434.
[15] A quantum dense coding implementation in an ion trap
Pan Chang-Ning(潘长宁) and Fang Mao-Fa(方卯发). Chin. Phys. B, 2008, 17(1): 34-37.
No Suggested Reading articles found!