|
|
|
Control of the Liouvillian gap in the finite open quantum system |
| Kai-Li Li(李凯丽), Yan-Sheng Liu(刘延盛), and Xi-Zheng Zhang(张禧征)† |
| College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China |
|
|
|
|
Abstract Relaxation processes in quantum systems coupled to external environments represent one of the most fundamental nonequilibrium phenomena in condensed matter physics. The Lindblad master equation provides a powerful framework for characterizing such open quantum dynamics. In this work, we systematically investigate how different types of quantum jump operators and system geometries influence the Liouvillian gap and the properties of the nonequilibrium steady state (NESS) in finite-size systems. We demonstrate that, due to the intricate structure of the Liouvillian superoperator, multiple NESSs with unphysical characteristics can emerge. The physically meaningful steady state must instead be understood as a superposition of these NESSs that collectively satisfy the required physical constraints. Furthermore, we find that the Liouvillian gap does not necessarily increase monotonically with the system-environment coupling strength. Instead, it can exhibit a nontrivial peak structure, corresponding to a minimum in the relaxation time. The magnitude of this peak is closely related to the symmetry properties of the system. Our results provide a deeper understanding of nonequilibrium behavior in finite quantum systems and offer new insights into the design and control of open quantum dynamics.
|
Received: 10 May 2025
Revised: 20 June 2025
Accepted manuscript online: 03 July 2025
|
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
| |
03.65.-w
|
(Quantum mechanics)
|
| |
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 12275193 and 11975166). |
Corresponding Authors:
Xi-Zheng Zhang
E-mail: zhangxz@tjnu.edu.cn
|
Cite this article:
Kai-Li Li(李凯丽), Yan-Sheng Liu(刘延盛), and Xi-Zheng Zhang(张禧征) Control of the Liouvillian gap in the finite open quantum system 2026 Chin. Phys. B 35 010306
|
[1] Impertro A, Huh S J, Karch S, Wienand J F, Bloch I and Aidelsburger M 2025 Nat. Phys. 21 895 [2] Wang X Q, Luo G Q, Liu J Y, LiuWV, Hemmerich A and Xu Z F 2021 Nature 596 227 [3] Yang B, Sun H, Huang C J,Wang H Y, Deng Y, Dai H N, Yuan Z S and Pan J W 2020 Science 369 550 [4] Singh J, Reuter J A P, Calarco T, Motzoi F and Zeier R 2025 arXiv:2503.06768 [quant-ph] [5] Jiang L, Xu Y, Li S, et al. 2025 Phys. Rev. Appl. 24 034057 [6] Liu C H, Ballard A, Olaya D, Schmidt D R, Biesecker J, Lucas T, Ullom J, Patel S, Rafferty O, Opremcak A and Dodge K 2023 Phys. Rev. X 4 030310 [7] Zhang P, Dong H, Gao Y, Zhao L, Hao J, Desaules J Y, Guo Q, Chen J, Deng J, Liu B and Ren W 2023 Nat. Phys. 19 120 [8] Wu Z, Hu C, Wang T, Chen Y, Li Y, Zhao L, Lü X Y and Peng X 2024 Phys. Rev. Lett. 133 173602 [9] Mahdian M and Mousavi Z 2025 Scientific Reports 15 11931 [10] Haga T, Nakagawa M, Hamazaki R and Ueda M 2023 Phys. Rev. Res. 5 043225 [11] Guo Y C and Yang S 2024 Chin. Phys. Lett. 41 120302 [12] Zhao J, Liu Y, Qin H, Chen Z and Zhao C 2021 Phys. Rev. Lett. 127 123901 [13] Bałut D, Bradlyn B and Abbamonte P 2025 Phys. Rev. B 111 12 [14] Bhattacharya A and Raman C 2025 Phys. Rev. Lett. 134 080201 [15] Xiong S J, Sun Z and Wang X G 2023 Chin. Phys. B 32 080302 [16] Mori T and Shirai T 2020 Phys. Rev. Lett. 125 230604 [17] Zhou K J, Zou J and Shao B 2023 Phys. Rev. A 108 042206 [18] Rahmani A, Opala A and Matuszewski M 2024 Phys. Rev. B 109 085311 [19] Lidar D A 2019 arXiv:1902.00967 [quant-ph] [20] Lindblad G 1976 Commun. Math. Phys. 48 119 [21] Sieberer L M, Buchhold M and Diehl S 2016 Rep. Prog. Phys. 79 096001 [22] Yuan D, Wang H R, Wang Z and Deng D L 2021 Phys. Rev. Lett. 126 160401 [23] Albert V V, Bradlyn B, Fraas M and Jiang L 2016 Phys. Rev. X 6 041031 [24] Kanki K, Hashimoto K, Petrosky T and Tanaka S 2016 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics 18–23 May 2015 Palermo, Italy 289 [25] Minganti F, Biella A, Bartolo N and Ciuti C 2018 Phys. Rev. A 98 042118 [26] Manzano D and Hurtado P I 2018 Adv. Phys. 67 1 [27] Haga T, Nakagawa M, Hamazaki R and Ueda M 2021 Phys. Rev. Lett. 127 070402 [28] Casteels W, Fazio R and Ciuti C 2017 Phys. Rev. A 95 012128 [29] Turkeshi X and Schiró M 2021 Phys. Rev. B 104 144301 [30] Temme K, Wolf M M and Verstraete F 2012 New J. Phys. 14 075004 [31] Ashida Y, Furukawa S, Ueda M 2017 Nat. Commun. 8 15791 [32] Griffiths D J and Schroeter D F 2005 Introduction to Quantum Mechanics (New York: Prentice Hall) pp. 279–294 [33] Sakurai J J and Napolitano J 2021 Modern Quantum Mechanics (San Francisco: Addison-Wesley) pp. 252–255 [34] Cohen-Tannoudji C, Diu B and Lalöe F 1977 Quantum Mechanics (New York: John Wiley & Sons) Vol. 1 pp. 312–314 [35] Dresselhaus M S, Dresselhaus G and Jorio A 2007 Group Theory: Application to the Physics of Condensed Matter (Berlin: Springer Science & Business Media) pp. 31–40 [36] Minev Z K, Mundhada S O, Shankar S, Reinhold P, Gutiérrez-Jáuregui R, Schoelkopf R J and Devoret M H 2019 Nature 570 200 [37] Zhao S K, Ge Z Y, Ang Z, Xue G M, Yan H S, Wang Z T and Zhao S P 2022 Phys. Rev. Lett. 129 160602 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|