Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010306    DOI: 10.1088/1674-1056/adeb60
GENERAL Prev   Next  

Control of the Liouvillian gap in the finite open quantum system

Kai-Li Li(李凯丽), Yan-Sheng Liu(刘延盛), and Xi-Zheng Zhang(张禧征)†
College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
Abstract  Relaxation processes in quantum systems coupled to external environments represent one of the most fundamental nonequilibrium phenomena in condensed matter physics. The Lindblad master equation provides a powerful framework for characterizing such open quantum dynamics. In this work, we systematically investigate how different types of quantum jump operators and system geometries influence the Liouvillian gap and the properties of the nonequilibrium steady state (NESS) in finite-size systems. We demonstrate that, due to the intricate structure of the Liouvillian superoperator, multiple NESSs with unphysical characteristics can emerge. The physically meaningful steady state must instead be understood as a superposition of these NESSs that collectively satisfy the required physical constraints. Furthermore, we find that the Liouvillian gap does not necessarily increase monotonically with the system-environment coupling strength. Instead, it can exhibit a nontrivial peak structure, corresponding to a minimum in the relaxation time. The magnitude of this peak is closely related to the symmetry properties of the system. Our results provide a deeper understanding of nonequilibrium behavior in finite quantum systems and offer new insights into the design and control of open quantum dynamics.
Keywords:  Liouvillian gap      nonequilibrium steady state      quantum jump operator  
Received:  10 May 2025      Revised:  20 June 2025      Accepted manuscript online:  03 July 2025
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.-w (Quantum mechanics)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 12275193 and 11975166).
Corresponding Authors:  Xi-Zheng Zhang     E-mail:  zhangxz@tjnu.edu.cn

Cite this article: 

Kai-Li Li(李凯丽), Yan-Sheng Liu(刘延盛), and Xi-Zheng Zhang(张禧征) Control of the Liouvillian gap in the finite open quantum system 2026 Chin. Phys. B 35 010306

[1] Impertro A, Huh S J, Karch S, Wienand J F, Bloch I and Aidelsburger M 2025 Nat. Phys. 21 895
[2] Wang X Q, Luo G Q, Liu J Y, LiuWV, Hemmerich A and Xu Z F 2021 Nature 596 227
[3] Yang B, Sun H, Huang C J,Wang H Y, Deng Y, Dai H N, Yuan Z S and Pan J W 2020 Science 369 550
[4] Singh J, Reuter J A P, Calarco T, Motzoi F and Zeier R 2025 arXiv:2503.06768 [quant-ph]
[5] Jiang L, Xu Y, Li S, et al. 2025 Phys. Rev. Appl. 24 034057
[6] Liu C H, Ballard A, Olaya D, Schmidt D R, Biesecker J, Lucas T, Ullom J, Patel S, Rafferty O, Opremcak A and Dodge K 2023 Phys. Rev. X 4 030310
[7] Zhang P, Dong H, Gao Y, Zhao L, Hao J, Desaules J Y, Guo Q, Chen J, Deng J, Liu B and Ren W 2023 Nat. Phys. 19 120
[8] Wu Z, Hu C, Wang T, Chen Y, Li Y, Zhao L, Lü X Y and Peng X 2024 Phys. Rev. Lett. 133 173602
[9] Mahdian M and Mousavi Z 2025 Scientific Reports 15 11931
[10] Haga T, Nakagawa M, Hamazaki R and Ueda M 2023 Phys. Rev. Res. 5 043225
[11] Guo Y C and Yang S 2024 Chin. Phys. Lett. 41 120302
[12] Zhao J, Liu Y, Qin H, Chen Z and Zhao C 2021 Phys. Rev. Lett. 127 123901
[13] Bałut D, Bradlyn B and Abbamonte P 2025 Phys. Rev. B 111 12
[14] Bhattacharya A and Raman C 2025 Phys. Rev. Lett. 134 080201
[15] Xiong S J, Sun Z and Wang X G 2023 Chin. Phys. B 32 080302
[16] Mori T and Shirai T 2020 Phys. Rev. Lett. 125 230604
[17] Zhou K J, Zou J and Shao B 2023 Phys. Rev. A 108 042206
[18] Rahmani A, Opala A and Matuszewski M 2024 Phys. Rev. B 109 085311
[19] Lidar D A 2019 arXiv:1902.00967 [quant-ph]
[20] Lindblad G 1976 Commun. Math. Phys. 48 119
[21] Sieberer L M, Buchhold M and Diehl S 2016 Rep. Prog. Phys. 79 096001
[22] Yuan D, Wang H R, Wang Z and Deng D L 2021 Phys. Rev. Lett. 126 160401
[23] Albert V V, Bradlyn B, Fraas M and Jiang L 2016 Phys. Rev. X 6 041031
[24] Kanki K, Hashimoto K, Petrosky T and Tanaka S 2016 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics 18–23 May 2015 Palermo, Italy 289
[25] Minganti F, Biella A, Bartolo N and Ciuti C 2018 Phys. Rev. A 98 042118
[26] Manzano D and Hurtado P I 2018 Adv. Phys. 67 1
[27] Haga T, Nakagawa M, Hamazaki R and Ueda M 2021 Phys. Rev. Lett. 127 070402
[28] Casteels W, Fazio R and Ciuti C 2017 Phys. Rev. A 95 012128
[29] Turkeshi X and Schiró M 2021 Phys. Rev. B 104 144301
[30] Temme K, Wolf M M and Verstraete F 2012 New J. Phys. 14 075004
[31] Ashida Y, Furukawa S, Ueda M 2017 Nat. Commun. 8 15791
[32] Griffiths D J and Schroeter D F 2005 Introduction to Quantum Mechanics (New York: Prentice Hall) pp. 279–294
[33] Sakurai J J and Napolitano J 2021 Modern Quantum Mechanics (San Francisco: Addison-Wesley) pp. 252–255
[34] Cohen-Tannoudji C, Diu B and Lalöe F 1977 Quantum Mechanics (New York: John Wiley & Sons) Vol. 1 pp. 312–314
[35] Dresselhaus M S, Dresselhaus G and Jorio A 2007 Group Theory: Application to the Physics of Condensed Matter (Berlin: Springer Science & Business Media) pp. 31–40
[36] Minev Z K, Mundhada S O, Shankar S, Reinhold P, Gutiérrez-Jáuregui R, Schoelkopf R J and Devoret M H 2019 Nature 570 200
[37] Zhao S K, Ge Z Y, Ang Z, Xue G M, Yan H S, Wang Z T and Zhao S P 2022 Phys. Rev. Lett. 129 160602
[1] PT-symmetry phase transition in a bipartite lattice with long-range interactions
Dapeng Zheng(郑大鹏), Siwu Li(李思吾), and Zeliang Xiang(项泽亮). Chin. Phys. B, 2025, 34(11): 110305.
[2] Diamond NV center quantum magnetic sensor using a dual-frequency broadband antenna
Ke-Qi Shi(施柯琦), Heng Hang(杭衡), Wen-Tao Lu(卢文韬), Jing-Cheng Huang(黄竟成), Na Li(李娜), Jin-Xu Wang(王金旭), Zeng-Bo Xu(许增博), Lin-Yan Yu(虞林嫣), Sheng-Kai Xia(夏圣开), Yu-Chen Bian(卞雨辰), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2025, 34(9): 094205.
[3] Non-quantized Zak phases, PT/APT symmetry transitions, and doubly degenerate exceptional points in a non-Hermitian spin-orbit coupled SSH model
Jun-Xing Huo(霍俊行), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2025, 34(7): 070301.
[4] Simulation of the non-Hermitian Kitaev chain by electrical circuits
Jiali Xu(徐佳莉), Hao Geng(耿昊), Abdul Wahab, Xiaosen Yang(杨孝森), Yuee Xie(谢月娥), and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(6): 068401.
[5] Investigating maximal steered coherence under the common impacts of reservoir and noise
Ling-Ling Xing(邢玲玲), Huan Yang(杨欢), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(5): 050304.
[6] Dynamics of quantum discord and geometric quantum discord in multiqubit interacting system
Xiao-Di Cheng(程晓迪), Ya-Jun Zheng(郑雅君), Meng-Jie Ran(冉梦杰), and Xiao-Yun Wang(王小云). Chin. Phys. B, 2025, 34(5): 050309.
[7] Sudden change of interferometric power for X-shape states
Dian Zhu(朱典), Fu-Lin Zhang(张福林), and Jing-Ling Chen(陈景灵). Chin. Phys. B, 2025, 34(2): 020305.
[8] Phase-matching enhanced quantum phase and amplitude estimation of a two-level system in a squeezed reservoir
Yan-Ling Li(李艳玲), Cai-Hong Liao(廖彩红), and Xing Xiao(肖兴). Chin. Phys. B, 2025, 34(1): 010307.
[9] Improving cutoff frequency estimation via optimized π-pulse sequence
Wang-Sheng Zheng(郑王升), Chen-Xia Zhang(张晨霞), and Bei-Li Gong(龚贝利). Chin. Phys. B, 2025, 34(1): 010309.
[10] Micron-resolved quantum precision measurement of magnetic field at the Tesla level
Si-Han An(安思瀚), Shi-Yu Ge(葛仕宇), Wen-Tao Lu(卢文韬), Guo-Bin Chen(陈国彬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Cheng-Kun Wang(王成坤), Lin-Yan Yu(虞林嫣), Zhi-Qiang Zhang(张致强), Yang Wang(汪洋), Gui-Jin Tang(唐贵进), Hua-Fu Cheng(程华富), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(12): 120305.
[11] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[12] Anomalous time-reversal symmetric non-Hermitian systems
Yifei Yi(易益妃). Chin. Phys. B, 2024, 33(6): 060302.
[13] Exceptional points and quantum dynamics in a non-Hermitian two-qubit system
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛), Zhen-Shan Yang(杨震山), Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙). Chin. Phys. B, 2024, 33(6): 060308.
[14] Quantum discord and its dynamics for multipartite systems
Jiaxin Luo(罗嘉欣) and Qiong Guo(郭琼). Chin. Phys. B, 2024, 33(6): 060303.
[15] Design of compact integrated diamond nitrogen-vacancy center quantum probe
Sheng-Kai Xia(夏圣开), Wen-Tao Lu(卢文韬), Xu-Tong Zhao(赵旭彤), Ya-Wen Xue(薛雅文), Zeng-Bo Xu(许增博), Shi-Yu Ge(葛仕宇), Yang Wang(汪洋), Lin-Yan Yu(虞林嫣), Yu-Chen Bian(卞雨辰), Si-Han An(安思瀚), Bo Yang(杨博), Jian-Jun Xiang(向建军), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(5): 054202.
No Suggested Reading articles found!