|
|
|
Superadiabatic stimulated Raman adiabatic passage between dressed states |
| Fangzhou Jin(金芳洲)1,†, Ao Wang(王奥)1, Yunlan Ji(季云兰)2, Hui Zhou(周辉)2,‡, and Jianpei Geng(耿建培)2,§ |
1 Department of Fundamental Subjects, Wuchang Shouyi University, Wuhan 430064, China; 2 School of Physics, Hefei University of Technology, Hefei 230009, China |
|
|
|
|
Abstract Stimulated Raman adiabatic passage (STIRAP) is a widely used technique for efficient population transfer between quantum states. However, the adiabatic nature of STIRAP requires slow evolution, leading to long operation times, which limits its practical applications. The superadiabatic method has been introduced to accelerate the STIRAP process, but it often necessitates additional couplings between the initial and target states, which may not be available in the original Hamiltonian. In this work, we present a novel approach to implement superadiabatic STIRAP (sa-STIRAP) between dressed states in a three-level quantum system. By modulating the amplitude and phase of the original driving fields, the initial and target states in dressed-state space can be effectively coupled. This approach provides a practical means of realizing sa-STIRAP in experimental setups, making it convenient to accelerate adiabatic quantum state transfer.
|
Received: 17 April 2025
Revised: 26 May 2025
Accepted manuscript online: 06 June 2025
|
|
PACS:
|
03.67.-a
|
(Quantum information)
|
| |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
| |
42.50.-p
|
(Quantum optics)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104282 and 12305014) and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2024HGTB0253). |
Corresponding Authors:
Fangzhou Jin, Hui Zhou, Jianpei Geng
E-mail: fzjin@wsyu.edu.cn;zhouhui9240@163.com;jianpei.geng@hfut.edu.cn
|
Cite this article:
Fangzhou Jin(金芳洲), Ao Wang(王奥), Yunlan Ji(季云兰), Hui Zhou(周辉), and Jianpei Geng(耿建培) Superadiabatic stimulated Raman adiabatic passage between dressed states 2026 Chin. Phys. B 35 010305
|
[1] Gaubatz U, Rudecki P, Schiemann S and Bergmann K 1990 J. Chem. Phys. 92 5363 [2] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003 [3] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev. Mod. Phys. 89 015006 [4] Vitanov N V, Halfmann T, Shore BWand Bergmann K 2001 Ann. Rev. Phys. Chem. 52 763 [5] Král P, Thanopulos I and Shapiro M 2007 Rev. Mod. Phys. 79 53 [6] Jing H 2008 Chin. Phys. Lett. 25 847 [7] Zheng A S, Liu J B and Chen H Y 2011 Chin. Phys. Lett. 28 080303 [8] Bergmann K, Vitanov N V and Shore B W 2015 J. Chem. Phys. 142 170901 [9] Unanyan R G, Yatsenko L P, Bergmann K and Shore B W 1997 Opt. Commun. 139 48 [10] Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003 [11] Demirplak M and Rice S A 2003 J. Chem. Phys. A 107 9937 [12] Demirplak M and Rice S A 2005 J. Chem. Phys. B 109 6838 [13] Berry M V 2009 J. Phys. A: Math. Theor. 42 365303 [14] Ruschhaupt A, Chen X, Alonso D and Muga J G 2012 New J. Phys. 14 093040 [15] del Campo A 2013 Phys. Rev. Lett. 111 100502 [16] Martínez-Garaot S, Torrontegui E, Chen X and Muga J G 2014 Phys. Rev. A 89 053408 [17] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martínez- Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001 [18] Li K Z, Tian J Z and Xiao L T 2024 Phys. Rev. A 109 022443 [19] Li Y C and Chen X 2016 Phys. Rev. A 94 063411 [20] Chen X and Muga J G 2012 Phys. Rev. A 86 033405 [21] Baksic A, Ribeiro H and Clerk A A 2016 Phys. Rev. Lett. 116 230503 [22] Zhou B B, Baksic A, Ribeiro H, Yale C G, Heremans F J, Jerger P C, Auer A, Burkard G, Clerk A A and Awschalom D D 2017 Nat. Phys. 13 330 [23] Song X K, Meng F, Liu B-J, Wang D, Ye L and Yung M H 2021 Opt. Express 29 7998 [24] ZhengW, Zhang Y, Dong Y, Xu J,Wang Z,Wang X, Li Y, Lan D, Zhao J, Li S and others 2022 npj Quantum Information 8 9 [25] Kumar K S, Vepsäläinen A, Danilin S and Paraoanu G S 2016 Nat. Commun. 7 10628 [26] Vepsäläinen A, Danilin S and Paraoanu G S 2019 Sci. Adv. 5 eaau5999 [27] Gong M, Yu M, Chu Y, Chen W, Cao Q, Wang N, Cai J, Betzholz R and Giannelli L 2024 Phys. Rev. A 109 032626 [28] Giannelli L and Arimondo E 2014 Phys. Rev. A 89 033419 [29] Du Y X, Liang Z T, Li Y C, Yue X X, Lv Q X, Huang W, Chen X, Yan H and Zhu S L 2016 Nat. Commun. 7 12479 [30] Evangelakos V, Paspalakis E and Stefanatos D 2023 Phys. Rev. A 107 052606 [31] Wilson C M, Duty T, Persson F, Sandberg M, Johansson G and Delsing P 2007 Phys. Rev. Lett. 98 257003 [32] Timoney N, Baumgart I, Johanning M, Varón A F, PlenioMB, Retzker A and Wunderlich Ch 2011 Nature 476 185 [33] Cai J M, Naydenov B, Pfeiffer R, McGuinness L P, Jahnke K D, Jelezko F, Plenio M B and Retzker A 2012 New J. Phys. 14 113023 [34] Xu X,Wang Z, Duan C, Huang P,Wang P,Wang Y, Xu N, Kong X, Shi F, Rong X and Du J 2012 Phys. Rev. Lett. 109 070502 [35] Belthangady C, Bar-Gill N, Pham L M, Arai K, Le Sage D, Cappellaro P and Walsworth R L 2013 Phys. Rev. Lett. 110 157601 [36] Koshino K, Inomata K, Yamamoto T and Nakamura Y 2013 Phys. Rev. Lett. 111 153601 [37] Golter D A, Baldwin T K and Wang H 2014 Phys. Rev. Lett. 113 237601 [38] Teissier J, Barfuss A and Maletinsky P 2017 J. Opt. 19 044003 [39] Xue Z Y, Gu F L, Hong Z P, Yang Z H, Zhang D W, Hu Y and You J Q 2017 Phys. Rev. Appl. 7 054022 [40] Barfuss A, Kölbl J, Thiel L, Teissier J, Kasperczyk M and Maletinsky P 2018 Nat. Phys. 14 1087 [41] Kölbl J, Barfuss A, Kasperczyk M S, Thiel L, Clerk A A, Ribeiro H and Maletinsky P 2019 Phys. Rev. Lett. 122 090502 [42] Jin F, Geng J and Zhou H 2025 Phys. Rev. A 111 022620 [43] Vasilev G S, Kuhn A and Vitanov N V 2009 Phys. Rev. A 80 013417 [44] González F J and Coto R 2022 Quantum Science and Technology 7 025015 [45] Du Y X, Liang Z T, Huang W, Yan H and Zhu S L 2014 Phys. Rev. A 90 023821 [46] Ling K, Jiang L, Wan R G and Yao Z H 2023 Chin. Phys. B 32 044211 [47] Sørensen J L, Møller D, Iversen T, Thomsen J B, Jensen F, Staanum P, Voigt D and Drewsen M 2006 New J. Phys. 8 261 [48] Zhang J W, Bu J T, Li J C, Meng W, Ding W Q, Wang B, Yuan W F, Du H J, Ding G Y, Chen W J, Chen L, Zhou F, Xu Z and Feng M 2024 Phys. Rev. Lett. 132 213602 [49] Fountoulakis A and Paspalakis E 2013 J. Appl. Phys. 113 174301 [50] Liu X F, Matsumoto Y, Fujita T, Ludwig A, Wieck A D and Oiwa A 2024 Phys. Rev. Lett. 132 027002 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|