Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068401    DOI: 10.1088/1674-1056/adbedb
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Simulation of the non-Hermitian Kitaev chain by electrical circuits

Jiali Xu(徐佳莉)1,2, Hao Geng(耿昊)1,2, Abdul Wahab1, Xiaosen Yang(杨孝森)1, Yuee Xie(谢月娥)1,2,†, and Yuanping Chen(陈元平)1,2,‡
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China;
2 Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China
Abstract  We investigate the topological properties of the non-Hermitian Kitaev chain by exploiting the versatility of the circuit. We implement non-reciprocal coupling through a negative impedance converter with current inversion (INIC). By conducting impedance measurements between neighboring nodes, we identify both topologically non-trivial and trivial phases within the circuit's admittance band dispersion under open boundary conditions (OBC). Our analysis of complex admittance spectra reveals differences when comparing circuits with periodic boundary conditions (PBC) to those with OBC. Furthermore, we observe ${Z_2}$ skin effects and Majorana zero modes in the topologically non-trivial phases, which are robust against disorders. Notably, the admittance spectra exhibit remarkable sensitivity to the attenuation of the boundary coupling strength. This AC circuit system serves as a promising platform for investigating topological phenomena, opening avenues for the development of functional devices across various application scenarios.
Keywords:  non-Hermitian Kitaev chain      non-Hermitian skin effect      circuit  
Received:  14 November 2024      Revised:  01 March 2025      Accepted manuscript online:  11 March 2025
PACS:  84.30.-r (Electronic circuits)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174157, 12074150, and 12174158).
Corresponding Authors:  Yuee Xie, Yuanping Chen     E-mail:  yueex@ujs.edu.cn;chenyp@ujs.edu.cn

Cite this article: 

Jiali Xu(徐佳莉), Hao Geng(耿昊), Abdul Wahab, Xiaosen Yang(杨孝森), Yuee Xie(谢月娥), and Yuanping Chen(陈元平) Simulation of the non-Hermitian Kitaev chain by electrical circuits 2025 Chin. Phys. B 34 068401

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Lee T E 2016 Phys. Rev. Lett. 116 133903
[3] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[4] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature 548 187
[5] Wang J H, Tao Y L and Xu Y 2022 Chin. Phys. Lett. 39 010301
[6] Pan L, Chen X, Chen Y and Zhai H 2020 Nat. Phys. 16 767
[7] Longhi S 2019 Phys. Rev. Lett. 122 237601
[8] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808
[9] Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761
[10] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801
[11] Zhang X, Tian Y, Jiang J H, LuMH and Chen Y F 2021 Nat. Commun. 12 5377
[12] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp LW, Lee C H, Szameit A, Greiter M and Thomale R 2020 Nat. Phys. 16 747
[13] Yang X, Cao Y and Zhai Y 2022 Chin. Phys. B 31 010308
[14] Hou W, Tang H, Xu Q and Lin Y 2024 Chin. Phys. Lett. 41 040301
[15] Huang Q K L, Liu Y K, Cao P C, Zhu X F and Li Y 2023 Chin. Phys. Lett. 40 106601
[16] Xiao L, Deng T, Wang K, Wang Z, Yi W and Xue P 2021 Phys. Rev. Lett. 126 230402
[17] Gaikwad C, Kowsari D, ChenWand Murch K W 2023 Phys. Rev. Res. 5 L042024
[18] Cao P C, Ju R, Wang D, Qi M, Liu Y K, Peng Y G, Chen H, Zhu X F and Li Y 2024 Sci. Adv. 10 eadn1746
[19] Özdemir Ş K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783
[20] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108
[21] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[22] Ji X, Geng H, Akhtar N and Yang X 2025 Phys. Rev. B 111 195419
[23] Budich J C and Bergholtz E J 2020 Phys. Rev. Lett. 125 180403
[24] Hokmabadi M P, Schumer A, Christodoulides D N and Khajavikhan M 2019 Nature 576 70
[25] Li J, Li J, Xiao Q and Wu Y 2016 Phys. Rev. A 93 063814
[26] Wahab A, Abbas M, Yang X and Chen Y 2024 Chaos, Solitons and Fractals 187 115436
[27] Kawabata K, Numasawa T and Ryu S 2023 Phys. Rev. X 13 021007
[28] Kitaev A Y 2001 Physics-Uspekhi 44 131
[29] Kitaev A 2003 Ann. Phys. 303 2
[30] Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412
[31] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[32] Slim J J, Wanjura C C, Brunelli M, del Pino J, Nunnenkamp A and Verhagen E 2024 Nature 627 767
[33] Busnaina J H, Shi Z, McDonald A, Dubyna D, Nsanzineza I, Hung J S C, Chang C W S, Clerk A A and Wilson C M 2024 Nat. Commun. 15 3065
[34] ten Haaf S L D,Wang Q, Bozkurt A M, Liu C X, Kulesh I, Kim P, Xiao D, Thomas C, Manfra M J, Dvir T, Wimmer M and Goswami S 2024 Nature 630 329
[35] Wang C, Fu Z, Mao W, Qie J, Stone A D and Yang L 2023 Adv. Opt. Photon. 15 442
[36] Vovcenko I V, Zyablovsky A A, Pukhov A A and Andrianov E S 2023 J. Opt. Soc. Am. B 40 2990
[37] Johnston A and Berloff N G 2024 Phys. Rev. Lett. 132 096901
[38] Gao H, Xue H, Gu Z, Liu T, Zhu J and Zhang B 2021 Nat. Commun. 12 1888
[39] Xue H, Yang Y and Zhang B 2022 Nat. Rev. Mater. 7 974
[40] Gu Z, Gao H, Cao P C, Liu T, Zhu X F and Zhu J 2021 Phys. Rev. Appl. 16 057001
[41] Zhang Q, Zhao L, Liu X, Feng X, Xiong L, Wu W and Qiu C 2023 Phys. Rev. Res. 5 L022050
[42] Liu D, Ren Z, Wong W C, Zhao E, He C, Pak K K, Jo G B and Li J 2024 Phys. Rev. A 109 053305
[43] Li L, Lee C H and Gong J 2020 Phys. Rev. Lett. 124 250402
[44] Zhou L, Li H, Yi W and Cui X 2022 Commun. Phys. 5 252
[45] Brandenbourger M, Locsin X, Lerner E and Coulais C 2019 Nat. Commun. 10 4608
[46] Cui X, Zhang R Y, Wang X, Wang W, Ma G and Chan C T 2023 Phys. Rev. Lett. 131 237201
[47] Yoshida T and Hatsugai Y 2019 Phys. Rev. B 100 054109
[48] Chen Y, Li X, Scheibner C, Vitelli V and Huang G 2021 Nat. Commun. 12 5935
[49] Lee C H, Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T and Thomale R 2018 Commun. Phys. 1 39
[50] Ghorashi S A A, Li T and Sato M 2021 Phys. Rev. B 104 L161117
[51] Wang H, Ruan J and Zhang H 2019 Phys. Rev. B 99 075130
[52] Helbig T, Hofmann T, Lee C H, Thomale R, Imhof S, Molenkamp LW and Kiessling T 2019 Phys. Rev. B 99 161114
[53] Yu L W and Deng D L 2021 Phys. Rev. Lett. 126 240402
[54] Zhang W, Xie X, Hao H, Dang J C, Xiao S, Shi S, Ni H, Niu Z, Wang C, Jin K, Zhang X and Xu X 2020 Light Sci. Appl. 9 109
[55] Albert V V, Glazman L I and Jiang L 2015 Phys. Rev. Lett. 114 173902
[56] Ezawa M 2019 Phys. Rev. B 100 075423
[57] Zhang X X and Franz M 2020 Phys. Rev. Lett. 124 046401
[58] Yu R, Zhao Y X and Schnyder A P 2020 Nat. Sci. Rev. 7 1288
[59] Hofmann T, Helbig T, Lee C H, Greiter M and Thomale R 2019 Phys. Rev. Lett. 122 247702
[60] Su L, Guo C X, Wang Y, Li L, Ruan X, Du Y, Chen S and Zheng D 2023 Chin. Phys. B 32 038401
[61] Bao J, Zou D, Zhang W, He W, Sun H and Zhang X 2019 Phys. Rev. B 100 201406
[62] Ningyuan J, Owens C, Sommer A, Schuster D and Simon J 2015 Phys. Rev. X 5 021031
[63] Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T and Thomale R 2018 Nat. Phys. 14 925
[64] Serra-Garcia M, Süsstrunk R and Huber S D 2019 Phys. Rev. B 99 020304
[65] Ezawa M 2019 Phys. Rev. B 99 201411
[66] Liu S, Ma S, Yang C, Zhang L, Gao W, Xiang Y J, Cui T J and Zhang S 2020 Phys. Rev. Appl. 13 014047
[67] Zou D, Chen T, He W, Bao J, Lee C H, Sun H and Zhang X 2021 Nat. Commun. 12 7201
[68] Ezawa M 2019 Phys. Rev. B 100 081401
[69] Li Y, Cao Y, Chen Y and Yang X 2022 J. Phys.: Condens. Matter 35 055401
[70] Ji X, Ding W, Chen Y and Yang X 2024 Phys. Rev. B 109 125420
[71] Dong Z, Li Z, Yang F, Qiu C W and Ho J S 2019 Nat. Electron. 2 335
[72] Yuan H, Zhang W, Zhou Z, Wang W, Pan N, Feng Y, Sun H and Zhang X 2023 Adv. Sci. 10 202301128
[73] Zhang H, Chen T, Li L, Lee C H and Zhang X 2023 Phys. Rev. B 107 085426
[1] Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
Zilu Chen(陈子禄), Zhijin Guan(管致锦), Shuxian Zhao(赵书娴), and Xueyun Cheng(程学云). Chin. Phys. B, 2025, 34(5): 050305.
[2] Study and circuit design of stochastic resonance system based on memristor chaos induction
Qi Liang(梁琦), Wen-Xin Yu(于文新), and Qiu-Mei Xiao(肖求美). Chin. Phys. B, 2025, 34(4): 040502.
[3] Coherence-protected operations in hybrid superconducting circuit-magnon system
Le-Tian Zhu(朱乐天), Xing-Yu Zhu(朱行宇), Zhu-Cheng Yue(岳祝诚), Tao Tu(涂涛), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2025, 34(3): 030302.
[4] Quantum decoder design for subsystem surface code based on multi-head graph attention and edge weighting
Nai-Hua Ji(纪乃华), Hui-Qian Sun(孙汇倩), Bo Xiao(肖博), Ping-Li Song(宋平俐), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2025, 34(2): 020309.
[5] A physical memristor model for Pavlovian associative memory
Jiale Lu(卢家乐), Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangdong Zhou(周广东), and Xiaofang Hu(胡小方). Chin. Phys. B, 2025, 34(1): 018703.
[6] SolarDesign: An online photovoltaic device simulation and design platform
Wei E. I. Sha(沙威), Xiaoyu Wang(王啸宇), Wenchao Chen(陈文超), Yuhao Fu(付钰豪), Lijun Zhang(张立军), Liang Tian(田亮), Minshen Lin(林敏慎), Shudi Jiao(焦书迪), Ting Xu(徐婷), Tiange Sun(孙天歌), and Dongxue Liu(刘冬雪). Chin. Phys. B, 2025, 34(1): 018801.
[7] In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits
Hao-Ran Tao(陶浩然), Lei Du(杜磊), Liang-Liang Guo(郭亮亮), Yong Chen(陈勇), Hai-Feng Zhang(张海峰), Xiao-Yan Yang(杨小燕), Guo-Liang Xu(徐国良), Chi Zhang(张 驰), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090310.
[8] Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator
Shun-Li Jiang(江顺利), Tian-Yi Jiang(蒋天翼), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Shu-Kun Ye(叶澍坤), Ran-Ran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090311.
[9] Correction of microwave pulse reflection by digital filters in superconducting quantum circuits
Liang-Liang Guo(郭亮亮), Peng Duan(段鹏), Lei Du(杜磊), Hai-Feng Zhang(张海峰), Hao-Ran Tao(陶浩然), Yong Chen(陈勇), Xiao-Yan Yang(杨小燕), Chi Zhang(张驰), Zhi-Long Jia(贾志龙), Wei-Cheng Kong(孔伟成), Zhao-Yun Chen(陈昭昀), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090303.
[10] Optimize Purcell filter design for reducing influence of fabrication variation
Xiao Cai(蔡晓), Yi-Biao Zhou(周翼彪), Wen-Long Yu(于文龙), Kang-Lin Xiong(熊康林), and Jia-Gui Feng(冯加贵). Chin. Phys. B, 2024, 33(6): 068501.
[11] Interplay between topology and localization on superconducting circuits
Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚). Chin. Phys. B, 2024, 33(6): 060311.
[12] Quantum circuit-based proxy blind signatures: A novel approach and experimental evaluation on the IBM quantum cloud platform
Xiaoping Lou(娄小平), Huiru Zan(昝慧茹), and Xuejiao Xu(徐雪娇). Chin. Phys. B, 2024, 33(5): 050307.
[13] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[14] Dynamics analysis and cryptographic implementation of a fractional-order memristive cellular neural network model
Xinwei Zhou(周新卫), Donghua Jiang(蒋东华), Jean De Dieu Nkapkop, Musheer Ahmad, Jules Tagne Fossi, Nestor Tsafack, and Jianhua Wu(吴建华). Chin. Phys. B, 2024, 33(4): 040506.
[15] Integer multiple quantum image scaling based on NEQR and bicubic interpolation
Shuo Cai(蔡硕), Ri-Gui Zhou(周日贵), Jia Luo(罗佳), and Si-Zhe Chen(陈思哲). Chin. Phys. B, 2024, 33(4): 040302.
No Suggested Reading articles found!