| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Simulation of the non-Hermitian Kitaev chain by electrical circuits |
| Jiali Xu(徐佳莉)1,2, Hao Geng(耿昊)1,2, Abdul Wahab1, Xiaosen Yang(杨孝森)1, Yuee Xie(谢月娥)1,2,†, and Yuanping Chen(陈元平)1,2,‡ |
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China; 2 Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China |
|
|
|
|
Abstract We investigate the topological properties of the non-Hermitian Kitaev chain by exploiting the versatility of the circuit. We implement non-reciprocal coupling through a negative impedance converter with current inversion (INIC). By conducting impedance measurements between neighboring nodes, we identify both topologically non-trivial and trivial phases within the circuit's admittance band dispersion under open boundary conditions (OBC). Our analysis of complex admittance spectra reveals differences when comparing circuits with periodic boundary conditions (PBC) to those with OBC. Furthermore, we observe ${Z_2}$ skin effects and Majorana zero modes in the topologically non-trivial phases, which are robust against disorders. Notably, the admittance spectra exhibit remarkable sensitivity to the attenuation of the boundary coupling strength. This AC circuit system serves as a promising platform for investigating topological phenomena, opening avenues for the development of functional devices across various application scenarios.
|
Received: 14 November 2024
Revised: 01 March 2025
Accepted manuscript online: 11 March 2025
|
|
PACS:
|
84.30.-r
|
(Electronic circuits)
|
| |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
| |
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
| |
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174157, 12074150, and 12174158). |
Corresponding Authors:
Yuee Xie, Yuanping Chen
E-mail: yueex@ujs.edu.cn;chenyp@ujs.edu.cn
|
Cite this article:
Jiali Xu(徐佳莉), Hao Geng(耿昊), Abdul Wahab, Xiaosen Yang(杨孝森), Yuee Xie(谢月娥), and Yuanping Chen(陈元平) Simulation of the non-Hermitian Kitaev chain by electrical circuits 2025 Chin. Phys. B 34 068401
|
[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 [2] Lee T E 2016 Phys. Rev. Lett. 116 133903 [3] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 [4] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Nature 548 187 [5] Wang J H, Tao Y L and Xu Y 2022 Chin. Phys. Lett. 39 010301 [6] Pan L, Chen X, Chen Y and Zhai H 2020 Nat. Phys. 16 767 [7] Longhi S 2019 Phys. Rev. Lett. 122 237601 [8] Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808 [9] Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761 [10] Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801 [11] Zhang X, Tian Y, Jiang J H, LuMH and Chen Y F 2021 Nat. Commun. 12 5377 [12] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp LW, Lee C H, Szameit A, Greiter M and Thomale R 2020 Nat. Phys. 16 747 [13] Yang X, Cao Y and Zhai Y 2022 Chin. Phys. B 31 010308 [14] Hou W, Tang H, Xu Q and Lin Y 2024 Chin. Phys. Lett. 41 040301 [15] Huang Q K L, Liu Y K, Cao P C, Zhu X F and Li Y 2023 Chin. Phys. Lett. 40 106601 [16] Xiao L, Deng T, Wang K, Wang Z, Yi W and Xue P 2021 Phys. Rev. Lett. 126 230402 [17] Gaikwad C, Kowsari D, ChenWand Murch K W 2023 Phys. Rev. Res. 5 L042024 [18] Cao P C, Ju R, Wang D, Qi M, Liu Y K, Peng Y G, Chen H, Zhu X F and Li Y 2024 Sci. Adv. 10 eadn1746 [19] Özdemir Ş K, Rotter S, Nori F and Yang L 2019 Nat. Mater. 18 783 [20] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F and Scherer A 2013 Nat. Mater. 12 108 [21] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901 [22] Ji X, Geng H, Akhtar N and Yang X 2025 Phys. Rev. B 111 195419 [23] Budich J C and Bergholtz E J 2020 Phys. Rev. Lett. 125 180403 [24] Hokmabadi M P, Schumer A, Christodoulides D N and Khajavikhan M 2019 Nature 576 70 [25] Li J, Li J, Xiao Q and Wu Y 2016 Phys. Rev. A 93 063814 [26] Wahab A, Abbas M, Yang X and Chen Y 2024 Chaos, Solitons and Fractals 187 115436 [27] Kawabata K, Numasawa T and Ryu S 2023 Phys. Rev. X 13 021007 [28] Kitaev A Y 2001 Physics-Uspekhi 44 131 [29] Kitaev A 2003 Ann. Phys. 303 2 [30] Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412 [31] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 [32] Slim J J, Wanjura C C, Brunelli M, del Pino J, Nunnenkamp A and Verhagen E 2024 Nature 627 767 [33] Busnaina J H, Shi Z, McDonald A, Dubyna D, Nsanzineza I, Hung J S C, Chang C W S, Clerk A A and Wilson C M 2024 Nat. Commun. 15 3065 [34] ten Haaf S L D,Wang Q, Bozkurt A M, Liu C X, Kulesh I, Kim P, Xiao D, Thomas C, Manfra M J, Dvir T, Wimmer M and Goswami S 2024 Nature 630 329 [35] Wang C, Fu Z, Mao W, Qie J, Stone A D and Yang L 2023 Adv. Opt. Photon. 15 442 [36] Vovcenko I V, Zyablovsky A A, Pukhov A A and Andrianov E S 2023 J. Opt. Soc. Am. B 40 2990 [37] Johnston A and Berloff N G 2024 Phys. Rev. Lett. 132 096901 [38] Gao H, Xue H, Gu Z, Liu T, Zhu J and Zhang B 2021 Nat. Commun. 12 1888 [39] Xue H, Yang Y and Zhang B 2022 Nat. Rev. Mater. 7 974 [40] Gu Z, Gao H, Cao P C, Liu T, Zhu X F and Zhu J 2021 Phys. Rev. Appl. 16 057001 [41] Zhang Q, Zhao L, Liu X, Feng X, Xiong L, Wu W and Qiu C 2023 Phys. Rev. Res. 5 L022050 [42] Liu D, Ren Z, Wong W C, Zhao E, He C, Pak K K, Jo G B and Li J 2024 Phys. Rev. A 109 053305 [43] Li L, Lee C H and Gong J 2020 Phys. Rev. Lett. 124 250402 [44] Zhou L, Li H, Yi W and Cui X 2022 Commun. Phys. 5 252 [45] Brandenbourger M, Locsin X, Lerner E and Coulais C 2019 Nat. Commun. 10 4608 [46] Cui X, Zhang R Y, Wang X, Wang W, Ma G and Chan C T 2023 Phys. Rev. Lett. 131 237201 [47] Yoshida T and Hatsugai Y 2019 Phys. Rev. B 100 054109 [48] Chen Y, Li X, Scheibner C, Vitelli V and Huang G 2021 Nat. Commun. 12 5935 [49] Lee C H, Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T and Thomale R 2018 Commun. Phys. 1 39 [50] Ghorashi S A A, Li T and Sato M 2021 Phys. Rev. B 104 L161117 [51] Wang H, Ruan J and Zhang H 2019 Phys. Rev. B 99 075130 [52] Helbig T, Hofmann T, Lee C H, Thomale R, Imhof S, Molenkamp LW and Kiessling T 2019 Phys. Rev. B 99 161114 [53] Yu L W and Deng D L 2021 Phys. Rev. Lett. 126 240402 [54] Zhang W, Xie X, Hao H, Dang J C, Xiao S, Shi S, Ni H, Niu Z, Wang C, Jin K, Zhang X and Xu X 2020 Light Sci. Appl. 9 109 [55] Albert V V, Glazman L I and Jiang L 2015 Phys. Rev. Lett. 114 173902 [56] Ezawa M 2019 Phys. Rev. B 100 075423 [57] Zhang X X and Franz M 2020 Phys. Rev. Lett. 124 046401 [58] Yu R, Zhao Y X and Schnyder A P 2020 Nat. Sci. Rev. 7 1288 [59] Hofmann T, Helbig T, Lee C H, Greiter M and Thomale R 2019 Phys. Rev. Lett. 122 247702 [60] Su L, Guo C X, Wang Y, Li L, Ruan X, Du Y, Chen S and Zheng D 2023 Chin. Phys. B 32 038401 [61] Bao J, Zou D, Zhang W, He W, Sun H and Zhang X 2019 Phys. Rev. B 100 201406 [62] Ningyuan J, Owens C, Sommer A, Schuster D and Simon J 2015 Phys. Rev. X 5 021031 [63] Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T and Thomale R 2018 Nat. Phys. 14 925 [64] Serra-Garcia M, Süsstrunk R and Huber S D 2019 Phys. Rev. B 99 020304 [65] Ezawa M 2019 Phys. Rev. B 99 201411 [66] Liu S, Ma S, Yang C, Zhang L, Gao W, Xiang Y J, Cui T J and Zhang S 2020 Phys. Rev. Appl. 13 014047 [67] Zou D, Chen T, He W, Bao J, Lee C H, Sun H and Zhang X 2021 Nat. Commun. 12 7201 [68] Ezawa M 2019 Phys. Rev. B 100 081401 [69] Li Y, Cao Y, Chen Y and Yang X 2022 J. Phys.: Condens. Matter 35 055401 [70] Ji X, Ding W, Chen Y and Yang X 2024 Phys. Rev. B 109 125420 [71] Dong Z, Li Z, Yang F, Qiu C W and Ho J S 2019 Nat. Electron. 2 335 [72] Yuan H, Zhang W, Zhou Z, Wang W, Pan N, Feng Y, Sun H and Zhang X 2023 Adv. Sci. 10 202301128 [73] Zhang H, Chen T, Li L, Lee C H and Zhang X 2023 Phys. Rev. B 107 085426 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|