Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050309    DOI: 10.1088/1674-1056/adca16
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Dynamics of quantum discord and geometric quantum discord in multiqubit interacting system

Xiao-Di Cheng(程晓迪), Ya-Jun Zheng(郑雅君), Meng-Jie Ran(冉梦杰), and Xiao-Yun Wang(王小云)†
College of Physics Mechanical and Electrical Engineering, Jishou University, Jishou 416000, China
Abstract  Using quantum discord (QD) and geometric quantum discord (GQD), quantum correlation dynamics is investigated for two coupled qubits within a multiqubit interacting system in the zero-temperature bosonic reservoir, under both weak and strong qubit-reservoir coupling regimes. The multiqubit system is connected with either a common bosonic reservoir (CBR) or multiple independent bosonic reservoirs (IBRs). In the CBR case, our findings indicate that both QD and GQD can be strengthened by increasing the number of qubits in the multiqubit system. Furthermore, we study the steady state QD and GQD in the strong coupling regime, and find that the stable value in the long-time limit is determined exclusively by the number of qubits. The evolution period of QD and GQD gets longer as the dipole-dipole interaction (DDI) strength increases, which helps prolong the correlation time and thus preserves the quantum correlation under the weak coupling regime. Further analysis reveals notable differences between the CBR and IBRs scenarios. In the IBRs case, the decay of QD and GQD becomes slower compared to the CBR case, with both measures tending to zero at a reduced rate. Moreover, GQD consistently exhibits lower values than QD in both scenarios. These findings provide valuable insights into the selection of appropriate correlation measurement techniques for quantifying quantum correlations.
Keywords:  quantum discord      geometric quantum discord      quantum correlation dynamics      multiqubit system  
Received:  21 November 2024      Revised:  06 April 2025      Accepted manuscript online:  08 April 2025
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11564013 and 11964010), the Natural Science Foundation of Hunan Province (Grant No. 2020JJ4495), and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 22A0377 and 21A0333).
Corresponding Authors:  Xiao-Yun Wang     E-mail:  wxyyun@163.com

Cite this article: 

Xiao-Di Cheng(程晓迪), Ya-Jun Zheng(郑雅君), Meng-Jie Ran(冉梦杰), and Xiao-Yun Wang(王小云) Dynamics of quantum discord and geometric quantum discord in multiqubit interacting system 2025 Chin. Phys. B 34 050309

[1] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford University Press)
[2] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[3] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[4] Datta A 2009 Phys. Rev. A 80 052304
[5] Li J Q and Liang J Q 2011 Phys. Lett. A 375 1496
[6] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[7] EI Anouz K, EI Aouadi I, EI Allati A and Mourabit T 2020 Int. J. Mod. Phys. B 34 2050093
[8] Xing L L, Yang H, Zhang G and Kong M 2024 Chin. Phys. B 33 050304
[9] Seddik S, El Anouz K and El Allati A 2022 Int. J. Geom. Methods M. 19 2250025
[10] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[11] Goettems E I, Maciel T O, Soares-Pinto D O and Duzzioni E I 2021 Phys. Rev. A 103 042416
[12] Adesso G, D’Ambrosio V, Nagali E, Piani M and Sciarrino F 2014 Phys. Rev. Lett. 112 140501
[13] Asthana S, Bala R and Ravishankar V 2022 Quantum Inf. Process. 21 35
[14] Faba J, Martín V and Robledo L 2021 Phys. Rev. A 103 032426
[15] Radhakrishnan C, Laurière M and Byrnes T 2020 Phys. Rev. Lett. 124 110401
[16] Wang Y, Hao L, Cheng C, Sun Y and Ma R 2024 Int. J. Theor. Phys. 63 279
[17] Schlosshauer M 2019 Phys. Rep. 831 1
[18] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[19] Dakić B, Vedral V and Brukner Č 2010 Phys. Rev. Lett. 105 190502
[20] Hu X, Fan H, Zhou D L and Liu W M 2013 Phys. Rev. A 87 032340
[21] Tufarelli T, Girolami D, Vasile R, Bose S and Adesso G 2012 Phys. Rev. A 86 052326
[22] Piani M 2012 Phys. Rev. A 86 034101
[23] De Chiara G and Sanpera A 2018 Rep. Prog. Phys. 81 074002
[24] Zhou X and Zheng Z J 2022 Eur. Phys. J. Plus 137 625
[25] Zhang Q, Xia Y J and Man Z X 2023 Phys. Rev. A 108 062211
[26] Sinayskiy I, Ferraro E, Napoli A, Messina A and Petruccione F 2009 J. Phys. A: Math. Theor. 42 485301
[27] Liao J Q, Huang J F and Kuang L M 2011 Phys. Rev. A 83 052110
[28] Wang Z, Wu W and Wang J 2019 Phys. Rev. A 99 042320
[29] Breuer H-P, Kappler B and Petruccione F 1999 Phys. Rev. A 59 1633
[30] Sun J Y, Xu K and Li Z D 2024 Phys. Rev. Res. 6 013317
[31] Fleming C H, Cummings N I, Anastopoulos C and Hu B L 2012 J. Phys. A: Math. Theor. 45 065301
[32] Zhao W J, Xu K, Sun J Y, Zai D L and Wu M L 2024 Phys. Scr. 99 065104
[33] Schliemann J, Khaetskii A and Loss D 2003 J. Phys. Condens. Matter 15 R1809
[34] Malinowski F K, Martins F, Smith T B, Bartlett S. D, Doherty A C, Nissen P D and Kuemmeth F 2018 Phys. Rev. X 8 011045
[35] Vandersypen L M K, Bluhm H, Clarke J S, Dzurak A S, Ishihara R, Morello A and Veldhorst M 2017 npj Quantum Inform. 3 34
[36] Fazio R and van der Zant H 2001 Phys. Rep. 355 235
[37] Feng W, Zhang G Q, Su Q P, Zhang J X and Yang C P 2022 Phys. Rev. Appl. 18 064036
[38] Roy T, Chand M, Bhattacharjee A, Hazra S, Kundu S, Damle and Vijay R 2018 Phys. Rev. A 98 052318
[39] Manatuly A, Niedenzu W, Román-Ancheyta R, Ç akmak B, Müstecaplioglu Ö E and Kurizki G 2019 Phys. Rev. E 99 042145
[40] Moon G, Heo M S, Kim Y, Noh H R and Jhe W 2017 Phys. Rep. 698 1
[41] Bosman S J, Gely M F, Singh V, Bruno A, Bothner D and Steele G A 2017 npj Quantum Inform. 3 46
[42] Kubo K, Ho Y and Goto H 2024 Phys. Rev. Appl. 22 024057
[43] Dunnett A J and Chin A W 2021 Front. Chem. 8 600731
[44] Bai S Y and An J H 2021 Phys. Rev. Lett. 127 083602
[45] Liang Z, Li J and Wu Y 2023 Phys. Rev. A 107 033701
[46] Jiang D K, Zhang R, Liu Y and Kuang L M 2024 Ann. Phys.-Berlin 2400179
[47] Luo J X and Guo Q 2024 Chin. Phys. B 33 060303
[48] Xiong C H, Qi W T, Miao M K and Wu M H 2023 Chin. Phys. B 32 100301
[49] Bai X Y and Zhang S Y 2022 Chin. Phys. B 31 040308
[50] Burgess A and Florescu M 2022 Phys. Rev. A 105 062207
[51] Hu Z X, Head-Marsden K, Mazziotti D A, Narang P and Kais S 2022 Quantum 6 726
[52] Chávez-Huerta M and Rojas F 2022 Quantum Inf. Process. 21 347
[53] Ullah A and Dral P O 2022 Nat. Commun. 13 1930
[54] Gallina F, Bruschi M and Fresch B 2022 New J. Phys. 24 023039
[55] Luo S 2008 Phys. Rev. A 77 42303
[56] Fanchini F F,Werlang T, Brasil C A and Arruda L G E 2010 Phys. Rev. A 81 052107
[57] Altintas F 2010 Opt. Commun. 283 5264
[1] Quantum discord and its dynamics for multipartite systems
Jiaxin Luo(罗嘉欣) and Qiong Guo(郭琼). Chin. Phys. B, 2024, 33(6): 060303.
[2] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[3] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[4] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[5] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[6] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[7] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
[8] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
[9] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[10] Geometric global quantum discord of two-qubit states
Yunlong Xiao(肖运龙), Tao Li(李陶), Shao-Ming Fei(费少明), Naihuan Jing(景乃桓), Zhi-Xi Wang(王志玺), Xianqing Li-Jost(李先清). Chin. Phys. B, 2016, 25(3): 030301.
[11] Phase effect on dynamics of quantum discord modulated by interaction between qubits
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(9): 090303.
[12] Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence
Yang Guo-Hui (杨国晖), Zhang Bing-Bing (张冰冰), Li Lei (李磊). Chin. Phys. B, 2015, 24(6): 060302.
[13] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua (嵇英华). Chin. Phys. B, 2015, 24(12): 120302.
[14] Characterizing the dynamics of quantum discord under phase damping with POVM measurements
Jiang Feng-Jian (蒋峰建), Ye Jian-Feng (叶剑锋), Yan Xin-Hu (闫新虎), Lü Hai-Jiang (吕海江). Chin. Phys. B, 2015, 24(10): 100304.
[15] Symmetric quantum discord for a two-qubit state
Wang Zhong-Xiao (王仲宵), Wang Bo-Bo (王波波). Chin. Phys. B, 2014, 23(7): 070305.
No Suggested Reading articles found!