Abstract Using quantum discord (QD) and geometric quantum discord (GQD), quantum correlation dynamics is investigated for two coupled qubits within a multiqubit interacting system in the zero-temperature bosonic reservoir, under both weak and strong qubit-reservoir coupling regimes. The multiqubit system is connected with either a common bosonic reservoir (CBR) or multiple independent bosonic reservoirs (IBRs). In the CBR case, our findings indicate that both QD and GQD can be strengthened by increasing the number of qubits in the multiqubit system. Furthermore, we study the steady state QD and GQD in the strong coupling regime, and find that the stable value in the long-time limit is determined exclusively by the number of qubits. The evolution period of QD and GQD gets longer as the dipole-dipole interaction (DDI) strength increases, which helps prolong the correlation time and thus preserves the quantum correlation under the weak coupling regime. Further analysis reveals notable differences between the CBR and IBRs scenarios. In the IBRs case, the decay of QD and GQD becomes slower compared to the CBR case, with both measures tending to zero at a reduced rate. Moreover, GQD consistently exhibits lower values than QD in both scenarios. These findings provide valuable insights into the selection of appropriate correlation measurement techniques for quantifying quantum correlations.
(Quantum error correction and other methods for protection against decoherence)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11564013 and 11964010), the Natural Science Foundation of Hunan Province (Grant No. 2020JJ4495), and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant Nos. 22A0377 and 21A0333).
Corresponding Authors:
Xiao-Yun Wang
E-mail: wxyyun@163.com
Cite this article:
Xiao-Di Cheng(程晓迪), Ya-Jun Zheng(郑雅君), Meng-Jie Ran(冉梦杰), and Xiao-Yun Wang(王小云) Dynamics of quantum discord and geometric quantum discord in multiqubit interacting system 2025 Chin. Phys. B 34 050309
[1] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford University Press) [2] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [3] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 [4] Datta A 2009 Phys. Rev. A 80 052304 [5] Li J Q and Liang J Q 2011 Phys. Lett. A 375 1496 [6] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655 [7] EI Anouz K, EI Aouadi I, EI Allati A and Mourabit T 2020 Int. J. Mod. Phys. B 34 2050093 [8] Xing L L, Yang H, Zhang G and Kong M 2024 Chin. Phys. B 33 050304 [9] Seddik S, El Anouz K and El Allati A 2022 Int. J. Geom. Methods M. 19 2250025 [10] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502 [11] Goettems E I, Maciel T O, Soares-Pinto D O and Duzzioni E I 2021 Phys. Rev. A 103 042416 [12] Adesso G, D’Ambrosio V, Nagali E, Piani M and Sciarrino F 2014 Phys. Rev. Lett. 112 140501 [13] Asthana S, Bala R and Ravishankar V 2022 Quantum Inf. Process. 21 35 [14] Faba J, Martín V and Robledo L 2021 Phys. Rev. A 103 032426 [15] Radhakrishnan C, Laurière M and Byrnes T 2020 Phys. Rev. Lett. 124 110401 [16] Wang Y, Hao L, Cheng C, Sun Y and Ma R 2024 Int. J. Theor. Phys. 63 279 [17] Schlosshauer M 2019 Phys. Rep. 831 1 [18] Henderson L and Vedral V 2001 J. Phys. A 34 6899 [19] Dakić B, Vedral V and Brukner Č 2010 Phys. Rev. Lett. 105 190502 [20] Hu X, Fan H, Zhou D L and Liu W M 2013 Phys. Rev. A 87 032340 [21] Tufarelli T, Girolami D, Vasile R, Bose S and Adesso G 2012 Phys. Rev. A 86 052326 [22] Piani M 2012 Phys. Rev. A 86 034101 [23] De Chiara G and Sanpera A 2018 Rep. Prog. Phys. 81 074002 [24] Zhou X and Zheng Z J 2022 Eur. Phys. J. Plus 137 625 [25] Zhang Q, Xia Y J and Man Z X 2023 Phys. Rev. A 108 062211 [26] Sinayskiy I, Ferraro E, Napoli A, Messina A and Petruccione F 2009 J. Phys. A: Math. Theor. 42 485301 [27] Liao J Q, Huang J F and Kuang L M 2011 Phys. Rev. A 83 052110 [28] Wang Z, Wu W and Wang J 2019 Phys. Rev. A 99 042320 [29] Breuer H-P, Kappler B and Petruccione F 1999 Phys. Rev. A 59 1633 [30] Sun J Y, Xu K and Li Z D 2024 Phys. Rev. Res. 6 013317 [31] Fleming C H, Cummings N I, Anastopoulos C and Hu B L 2012 J. Phys. A: Math. Theor. 45 065301 [32] Zhao W J, Xu K, Sun J Y, Zai D L and Wu M L 2024 Phys. Scr. 99 065104 [33] Schliemann J, Khaetskii A and Loss D 2003 J. Phys. Condens. Matter 15 R1809 [34] Malinowski F K, Martins F, Smith T B, Bartlett S. D, Doherty A C, Nissen P D and Kuemmeth F 2018 Phys. Rev. X 8 011045 [35] Vandersypen L M K, Bluhm H, Clarke J S, Dzurak A S, Ishihara R, Morello A and Veldhorst M 2017 npj Quantum Inform. 3 34 [36] Fazio R and van der Zant H 2001 Phys. Rep. 355 235 [37] Feng W, Zhang G Q, Su Q P, Zhang J X and Yang C P 2022 Phys. Rev. Appl. 18 064036 [38] Roy T, Chand M, Bhattacharjee A, Hazra S, Kundu S, Damle and Vijay R 2018 Phys. Rev. A 98 052318 [39] Manatuly A, Niedenzu W, Román-Ancheyta R, Ç akmak B, Müstecaplioglu Ö E and Kurizki G 2019 Phys. Rev. E 99 042145 [40] Moon G, Heo M S, Kim Y, Noh H R and Jhe W 2017 Phys. Rep. 698 1 [41] Bosman S J, Gely M F, Singh V, Bruno A, Bothner D and Steele G A 2017 npj Quantum Inform. 3 46 [42] Kubo K, Ho Y and Goto H 2024 Phys. Rev. Appl. 22 024057 [43] Dunnett A J and Chin A W 2021 Front. Chem. 8 600731 [44] Bai S Y and An J H 2021 Phys. Rev. Lett. 127 083602 [45] Liang Z, Li J and Wu Y 2023 Phys. Rev. A 107 033701 [46] Jiang D K, Zhang R, Liu Y and Kuang L M 2024 Ann. Phys.-Berlin 2400179 [47] Luo J X and Guo Q 2024 Chin. Phys. B 33 060303 [48] Xiong C H, Qi W T, Miao M K and Wu M H 2023 Chin. Phys. B 32 100301 [49] Bai X Y and Zhang S Y 2022 Chin. Phys. B 31 040308 [50] Burgess A and Florescu M 2022 Phys. Rev. A 105 062207 [51] Hu Z X, Head-Marsden K, Mazziotti D A, Narang P and Kais S 2022 Quantum 6 726 [52] Chávez-Huerta M and Rojas F 2022 Quantum Inf. Process. 21 347 [53] Ullah A and Dral P O 2022 Nat. Commun. 13 1930 [54] Gallina F, Bruschi M and Fresch B 2022 New J. Phys. 24 023039 [55] Luo S 2008 Phys. Rev. A 77 42303 [56] Fanchini F F,Werlang T, Brasil C A and Arruda L G E 2010 Phys. Rev. A 81 052107 [57] Altintas F 2010 Opt. Commun. 283 5264
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.