Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 010309    DOI: 10.1088/1674-1056/ad9ba1
GENERAL Prev   Next  

Improving cutoff frequency estimation via optimized π-pulse sequence

Wang-Sheng Zheng(郑王升)1, Chen-Xia Zhang(张晨霞)2, and Bei-Li Gong(龚贝利)1,†
1 School of Electrical Engineering, Guangxi University, Nanning 530004, China;
2 Faculty of Science and Technology, College of Arts and Sciences of Hubei Normal University, Huangshi 435109, China
Abstract  The cutoff frequency is one of the crucial parameters that characterize the environment. In this paper, we estimate the cutoff frequency of the Ohmic spectral density by applying the $\pi$-pulse sequences (both equidistant and optimized) to a quantum probe coupled to a bosonic environment. To demonstrate the precision of cutoff frequency estimation, we theoretically derive the quantum Fisher information (QFI) and quantum signal-to-noise ratio (QSNR) across sub-Ohmic, Ohmic, and super-Ohmic environments, and investigate their behaviors through numerical examples. The results indicate that, compared to the equidistant $\pi$-pulse sequence, the optimized $\pi$-pulse sequence significantly shortens the time to reach maximum QFI while enhancing the precision of cutoff frequency estimation, particularly in deep sub-Ohmic and deep super-Ohmic environments.
Keywords:  environment parameters estimation      quantum Fisher information      optimized $\pi$-pulse sequence  
Received:  19 August 2024      Revised:  30 October 2024      Accepted manuscript online:  09 December 2024
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.-a (Quantum information)  
  06.20.-f (Metrology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62403150), the Innovation Project of Guangxi Graduate Education (Grant No. YCSW2024129), and the Guangxi Science and Technology Base and Talent Project (Grant No. Guike AD23026208).
Corresponding Authors:  Bei-Li Gong     E-mail:  aublgong@gxu.edu.cn

Cite this article: 

Wang-Sheng Zheng(郑王升), Chen-Xia Zhang(张晨霞), and Bei-Li Gong(龚贝利) Improving cutoff frequency estimation via optimized π-pulse sequence 2025 Chin. Phys. B 34 010309

[1] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (New York: Oxford University Press)
[2] Paavola J, Piilo J, Suominen K A and Maniscalco S 2009 Phys. Rev. A 79 052120
[3] Razavian S and Paris M G A 2019 Physica A 525 825
[4] Gebbia F, Benedetti C, Benatti F, Floreanini R, Bina M and Paris M G A 2020 Phys. Rev. A 101 032112
[5] Tamascelli D, Benedetti C, Breuer H P and Paris M G A 2020 New J. Phys. 22 083027
[6] Zhang C and Gong B 2024 Phys. Scr. 99 025101
[7] Tan Q S, Wu W, Xu L, Liu J and Kuang L M 2022 Phys. Rev. A 106 032602
[8] Benedetti C, Salari Sehdaran F, ZandiMH and ParisMG A 2018 Phys. Rev. A 97 012126
[9] Yang Y and Jing J 2024 Chin. Phys. B 33 030307
[10] Bina M, Grasselli F and Paris M G A 2018 Phys. Rev. A 97 012125
[11] Sehdaran F S, Zandi M H and Bahrampour A 2019 Phys. Lett. A 383 126006
[12] Mirza A R and Chaudhry A Z 2024 Sci. Rep. 14 6803
[13] Ather H and Chaudhry A Z 2021 Phys. Rev. A 104 012211
[14] Liu L and Yuan H 2020 Phys. Rev. A 102 012208
[15] Ji Y, Ke Q and Hu J 2020 Chin. Phys. B 29 120303
[16] Fallani A, Rossi M A C, Tamascelli D and Genoni M G 2022 PRX Quantum 3 020310
[17] Liu J and Yuan H 2017 Phys. Rev. A 96 012117
[18] Ansel Q, Dionis E and Sugny D 2024 SciPost Phys. 16 013
[19] Gong B and Cui W 2018 Sci. China Phys. Mech. Astron. 61 040312
[20] Zwick A, Á lvarez G A and Kurizki G 2016 Phys. Rev. Appl. 5 014007
[21] Viola L, Knill E and Lloyd S 1999 Phys. Rev. Lett. 82 2417
[22] Zhen X L, Zhang F H, Feng G, Li H and Long G L 2016 Phys. Rev. A 93 022304
[23] Schroeder C A and Agarwal G S 2011 Phys. Rev. A 83 012324
[24] Chakraborty I, Chakrabarti A and Bhattacharyya R 2015 Phys. Chem. Chem. Phys. 17 32384
[25] Ji Y and Hu J 2020 Int. J. Theor. Phys. 59 1585
[26] Dong W, Calderon-Vargas F A and Economou S E 2020 New J. Phys. 22 073059
[27] Uhrig G S 2007 Phys. Rev. Lett. 98 100504
[28] Qian X, Sun Z and Zhou N 2022 Phys. Rev. A 105 012431
[29] Li H B, Zheng Q, Zhi Q J and Li Y 2022 Phys. Rev. A 105 042612
[30] Uhrig G S 2008 New J. Phys. 10 083024
[31] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[32] Lin Y C, Yang P Y and Zhang W M 2016 Sci. Rep. 6 34804
[33] Nalbach P, Braun D and Thorwart M 2011 Phys. Rev. E 84 041926
[34] Ringsmuth A K, Milburn G J and Stace T M 2012 Nat. Phys. 8 562
[35] De Silva N,Warnakula T, Gunapala S D, StockmanMI and Premaratne M 2021 J. Phys.: Condens. Matter 33 145304
[36] Correa L A, Perarnau-Llobet M, Hovhannisyan K V, Hernández- Santana S, Mehboudi M and Sanpera A 2017 Phys. Rev. A 96 062103
[37] He D, Thingna J and Cao J 2018 Phys. Rev. B 97 195437
[38] Palma G M, antti Suominen K and Ekert A 1996 Proc. R. Soc. Lond. A. 452 567
[39] Austin S, Zahid S and Chaudhry A Z 2020 Phys. Rev. A 101 022114
[40] Niu C and Yu S 2023 Chin. Phys. Lett. 40 110301
[41] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[42] Luo M, LiuW, Chen Y, Han S and Gao S 2022 Chin. Phys. B 31 050304
[43] Kenfack L T, GueagniWDW, Tchoffo M and Fai L C 2021 Eur. Phys. J. Plus 136 1
[1] Phase-matching enhanced quantum phase and amplitude estimation of a two-level system in a squeezed reservoir
Yan-Ling Li(李艳玲), Cai-Hong Liao(廖彩红), and Xing Xiao(肖兴). Chin. Phys. B, 2025, 34(1): 010307.
[2] Quantum-enhanced interferometry with unbalanced entangled coherent states
Jun Tang(汤俊), Zi-Hang Du(堵子航), Wei Zhong(钟伟), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2025, 34(1): 020303.
[3] Parameter estimation in n-dimensional massless scalar field
Ying Yang(杨颖) and Jiliang Jing(荆继良). Chin. Phys. B, 2024, 33(3): 030307.
[4] Holevo bound independent of weight matrices for estimating two parameters of a qubit
Chang Niu(牛畅) and Sixia Yu(郁司夏). Chin. Phys. B, 2024, 33(2): 020304.
[5] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[6] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[7] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[8] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[9] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[10] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[11] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[12] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[13] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
[14] Enhancing parameter precision of optimal quantum estimation by quantum screening
Huang Jiang(黄江), Guo You Neng(郭有能), Xie Qin(谢钦). Chin. Phys. B, 2016, 25(2): 020303.
[15] Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Ke (曾可). Chin. Phys. B, 2015, 24(11): 114201.
No Suggested Reading articles found!