Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070301    DOI: 10.1088/1674-1056/adc7f3
GENERAL Prev   Next  

Non-quantized Zak phases, PT/APT symmetry transitions, and doubly degenerate exceptional points in a non-Hermitian spin-orbit coupled SSH model

Jun-Xing Huo(霍俊行)1, Jian Li(李健)1,2,3,†, Qing-Xu Li(李清旭)1,2,3, and Jia-Ji Zhu(朱家骥)1,2,3,‡
1 School of Science and Laboratory of Quantum Information Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
3 Southwest Center for Theoretical Physics, Chongqing University, Chongqing 401331, China
Abstract  We theoretically investigate a one-dimensional Su-Schrieffer-Heeger (SSH) model with spin-orbit coupling (SOC) and sublattice-dependent gain and loss. As the gain and loss increase, the system transitions from a parity-time (${\rm PT}$) symmetric phase to a parity-time and anti-parity-time (${\rm PT\&APT}$) symmetry-breaking phase, and finally to an anti-parity-time (${\rm APT}$) symmetric phase. Notably, when the intracell and intercell hopping, intracell and intercell SOC parameters are all equal to half the gain-loss parameter, the model exhibits a doubly degenerate exceptional point (EP). When the SOC is equal for intracell and intercell interactions, a stronger hopping mechanism within cells compared to that between cells results in an increase in SOC that transitions the Zak phase from zero to a non-quantized value, eventually arriving at one. In contrast, a reduction in the strength of intracell hopping leads the Zak phase to transition from two to a non-quantized value, eventually arriving at one. If the intracell and intercell SOC are not aligned, altering these couplings leads to a shift in the Zak phase from two to a non-quantized level, then to one, re-entering the non-quantized region, and eventually arriving at zero. We suggest a practical experimental setup for our model that can be implemented using electrical circuits.
Keywords:  spin-orbit coupling      parity-time symmetry      Zak phase  
Received:  13 February 2025      Revised:  19 March 2025      Accepted manuscript online:  02 April 2025
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  11.30.Er (Charge conjugation, parity, time reversal, and other discrete symmetries)  
  73.43.Nq (Quantum phase transitions)  
Fund: Project supported by the Natural Science Foundation of Chongqing, China (Grant No. CSTB2024NSCQ-MSX0736), Science and Technology Innovation Key R&D Program of Chongqing (Grant No. CSTB2024TIAD-STX0035), and the Research Foundation of Institute for Advanced Sciences of CQUPT (Grant No. E011A2022328).
Corresponding Authors:  Jian Li, Jia-Ji Zhu     E-mail:  jianli@cqupt.edu.cn;zhujj@cqupt.edu.cn

Cite this article: 

Jun-Xing Huo(霍俊行), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥) Non-quantized Zak phases, PT/APT symmetry transitions, and doubly degenerate exceptional points in a non-Hermitian spin-orbit coupled SSH model 2025 Chin. Phys. B 34 070301

[1] Yang J H, Li Z L, Lu X Z, Whangbo M H, Wei S H, Gong X G and Xiang H J 2012 Phys. Rev. Lett. 109 107203
[2] Qaiumzadeh A, Ado I A, Duine R A, Titov M and Brataas A 2018 Phys. Rev. Lett. 120 197202
[3] Yang J, Li J, Lin L and Zhu J J 2020 Chin. Phys. Lett. 37 087501
[4] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
[5] Yang W, Chang K and Zhang S C 2008 Phys. Rev. Lett. 100 056602
[6] Manchon A and Zhang S 2009 Phys. Rev. B 79 094422
[7] Zhou P, Wang Z, Liu J and Yu Z 2025 Phys. Rev. B 111 035403
[8] Medina Duenas J, García J H and Roche S 2024 Phys. Rev. Lett. 132 266301
[9] Banerjee S, Rowland J, Erten O and Randeria M 2014 Phys. Rev. X 4 031045
[10] Rowland J, Banerjee S and Randeria M 2016 Phys. Rev. B 93 020404
[11] Hu Y, Le C, Zhang Y, Zhao Z, Liu J, Ma J, Plumb N C, Radovic M, Chen H, Schnyder A P, et al. 2023 Nat. Phys. 19 1827
[12] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[13] Liu D, Liu E, Xu Q, Shen J, Li Y, Pei D, Liang A, Dudin P, Kim T, Cacho C, et al. 2022 npj Quantum Mater. 7 11
[14] Bodo F, Desmarais J K and Erba A 2022 Phys. Rev. B 105 125108
[15] de Leon N P, Itoh K M, Kim D, Mehta K K, Northup T E, Paik H, Palmer B S, Samarth N, Sangtawesin S and Steuerman D W 2021 Science 372 eabb2823
[16] Zhou X, Shen Q, Wang Y, Dai Y, Chen Y and Wu K 2024 Natl. Sci. Rev. 11 nwae272
[17] Wang Z, Zeng X T, Biao Y, Yan Z and Yu R 2023 Phys. Rev. Lett. 130 057201
[18] Yang H, Song L, Cao Y and Yan P 2023 Commun. Phys. 6 211
[19] Wu M, Zhao Q, Kang L, Weng M, Chi Z, Peng R, Liu J, Werner D H, Meng Y and Zhou J 2023 Phys. Rev. B 107 064307
[20] Li Y, Zhang J H, Mei F, Xie B, Lu M H, Ma J, Xiao L and Jia S 2023 Phys. Rev. Appl. 20 064042
[21] Yuan H, Zhang W, Zhou Z, Wang W, Pan N, Feng Y, Sun H and Zhang X 2023 Adv. Sci. 10 2301128
[22] Rafi Ul Islam S, Siu Z B, Sahin H, Lee C H and Jalil M B 2022 Phys. Rev. Res. 4 043108
[23] Yan Q, Hu X, Fu Y, Lu C, Fan C, Liu Q, Feng X, Sun Q and Gong Q 2021 Adv. Opt. Mater. 9 2001739
[24] Vaidya S, Noh J, Cerjan A, Jörg C, Von Freymann G and Rechtsman M C 2020 Phys. Rev. Lett. 125 253902
[25] Wang D, Yang B, Guo Q, Zhang R Y, Xia L, Su X, Chen W J, Han J, Zhang S and Chan C T 2021 Light Sci. Appl. 10 83
[26] Parto M, Liu Y G, Bahari B, Khajavikhan M and Christodoulides D N 2020 Nanophotonics 10 403
[27] Zhang Z, Hu B, Liu F, Cheng Y, Liu X and Christensen J 2020 Phys. Rev. B 101 220102
[28] Zhang X, Zangeneh Nejad F, Chen Z G, Lu M H and Christensen J 2023 Nature 618 687
[29] Geng Z G, Peng Y G, Lv H, Xiong Z, Chen Z and Zhu X F 2021 J. Phys.: Condens. Matter 34 104001
[30] Jiang W C, Wu H, Li Q X, Li J and Zhu J J 2024 Phys. Rev. B 110 155144
[31] Yi Y and Yang Z 2020 Phys. Rev. Lett. 125 186802
[32] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[33] Bender C M 2007 Rep. Prog. Phys. 70 947
[34] Guo C X, Wang X R, Wang C and Kou S P 2020 Phys. Rev. B 101 144439
[35] Lei Z, Lee C H and Li L 2024 Commun. Phys. 7 100
[36] Heiss W 2004 J. Phys. A: Math. Gen. 37 2455
[37] Ding K, Fang C and Ma G 2022 Nat. Rev. Phys. 4 745
[38] Deng Z L, Li F J, Li H, Li X and Alu A 2022 Laser Photon. Rev. 16 2100617
[39] Xiao L, Deng T, Wang K, Wang Z, Yi W and Xue P 2021 Phys. Rev. Lett. 126 230402
[40] Xiao L,Wang K, Zhan X, Bian Z, Kawabata K, Ueda M, YiWand Xue P 2019 Phys. Rev. Lett. 123 230401
[41] Yang Z, Schnyder A P, Hu J and Chiu C K 2021 Phys. Rev. Lett. 126 086401
[42] Zhang S M, He T Y and Jin L 2024 Chin. Phys. Lett. 41 027201
[43] Duggan R, Mann S A and Alu A 2022 ACS Photonics 9 1554
[44] Wang Z, Liang Z, Hu J, Zhou P, Liu L, Hu G, Wang W and Ye M 2025 Adv. Phys. 8 2400349
[45] Zhang M, Sweeney W, Hsu C W, Yang L, Stone A and Jiang L 2019 Phys. Rev. Lett. 123 180501
[46] Li A, Wei H, Cotrufo M, Chen W, Mann S, Ni X, Xu B, Chen J, Wang J, Fan S, et al. 2023 Nat. Nanotechnol. 18 706
[47] Zyablovsky A A, Doronin I V, Andrianov E S, Pukhov A A, Lozovik Y E, Vinogradov A P and Lisyansky A A 2021 Laser Photon. Rev. 15 2000450
[48] Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J, Al A, Fan S and Qiu C W 2019 Science 364 170
[49] Konotop V V and Zezyulin D A 2018 Phys. Rev. Lett. 120 123902
[50] Choi Y, Hahn C, Yoon J W and Song S H 2018 Nat. Commun. 9 2182
[51] Jian Y, Wang Y, Guo Z, Hu S, Wu B, Yang Y and Chen H 2023 Appl. Phys. Lett. 123 141702
[52] Nair J M, Mukhopadhyay D and Agarwal G 2021 Phys. Rev. Lett. 126 180401
[53] Guo Z, Yang F, Zhang H, Wu X, Wu Q, Zhu K, Jiang J, Jiang H, Yang Y, Li Y, et al. 2024 Natl. Sci. Rev. 11 nwad172
[54] Fang Y L, Zhao J L, Chen D X, Zhou Y H, Zhang Y, Wu Q C, Yang C P and Nori F 2022 Phys. Rev. Res. 4 033022
[55] Jin L and Song Z 2019 Phys. Rev. B 99 081103
[56] Wu H and An J H 2020 Phys. Rev. B 102 041119
[57] Wu H, Wang B Q and An J H 2021 Phys. Rev. B 103 L041115
[58] Li J R, Zhang L L, Cui W B and Gong W J 2022 Phys. Rev. Res. 4 023009
[59] Wang Y, Wu H, McCandless G T, Chan J Y and Ali M N 2023 Nat. Rev. Phys. 5 635
[60] Zhao X, Wang Z, Chen J and Wang B 2022 Results Phys. 35 105360
[61] Zeng X L, Lai W X, Wei Y W and Ma Y Q 2024 Chin. Phys. B 33 030310
[62] Li G Q, Wang B H, Tang J Y, Peng P and Dong L W 2023 Chin. Phys. B 32 077102
[63] Bao X X, Guo G F and Tan L 2023 Chin. Phys. B 32 020301
[64] Xiao L, Zhan X, Bian Z, Wang K, Zhang X, Wang X, Li J, Mochizuki K, Kim D, Kawakami N, et al. 2017 Nat. Phys. 13 1117
[65] Liu S, Ma S, Yang C, Zhang L, Gao W, Xiang Y J, Cui T J and Zhang S 2020 Phys. Rev. Appl. 13 014047
[66] Stegmaier A, Imhof S, Helbig T, Hofmann T, Lee C H, Kremer M, Fritzsche A, Feichtner T, Klembt S, Höfling S, et al. 2021 Phys. Rev. Lett. 126 215302
[67] Cheng X T, Wang L F, Li Y Z, Hou D B, Yu J W, Li C H, Lin X, Liu F, Gao F and Jin C Y 2024 Laser Photon. Rev. 18 2400218
[68] Wu H C, Jin L and Song Z 2021 Phys. Rev. B 103 235110
[69] Hu B, Zhang Z, Yue Z, Liao D, Liu Y, Zhang H, Cheng Y, Liu X and Christensen J 2023 Phys. Rev. Lett. 131 066601
[70] Wu H C, Yang X M, Jin L and Song Z 2020 Phys. Rev. B 102 161101
[71] Dangel F, Wagner M, Cartarius H, Main J and Wunner G 2018 Phys. Rev. A 98 013628
[72] JiangWC, Li J, Li Q X and Zhu J J 2023 Appl. Phys. Lett. 123 201107
[73] Li J R,Wang Z A, Xu T T, Zhang L L and GongWJ 2023 Prog. Theor. Exp. Phys. 2023 023
[74] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015
[75] Wang H X, Guo G Y and Jiang J H 2019 New J. Phys. 21 093029
[76] Longhi S 2018 Opt. Lett. 43 4025
[1] Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(6): 067401.
[2] Ground state of SU(3) spin-orbit coupled soft-core Bose gas
Jia Liu(刘佳), Jing Feng(冯婧), Ya-Jun Wang(王雅君), Xiao-Fei Zhang(张晓斐), and Xue-Ying Yang(杨雪滢). Chin. Phys. B, 2025, 34(6): 060301.
[3] Spectroscopic and transition properties of strontium chloride
Dong-Lan Wu(伍冬兰), Bi-Kun Liu(刘必坤), Wen-Tao Zhou(周文涛), Jia-Yun Chen(陈佳运), Zhang-Li Lai(赖章丽), Bo Liu(刘波), and Bing Yan(闫冰). Chin. Phys. B, 2025, 34(4): 043101.
[4] Three-body physics under dissipative spin-orbit coupling
Xi Zhao(赵茜). Chin. Phys. B, 2025, 34(3): 033101.
[5] Correlated physics, charge and magnetic orders in moiré kagomé systems
Zhaochen Liu(刘兆晨) and Jing Wang(王靖). Chin. Phys. B, 2025, 34(2): 027304.
[6] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[7] Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions
Yu-Chen Hu(胡雨辰) and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2024, 33(7): 077202.
[8] Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry
Kai-Hua Shao(邵凯花), Bao-Long Xi(席保龙), Zhong-Hong Xi(席忠红), Pu Tu(涂朴), Qing-Qing Wang(王青青), Jin-Ping Ma(马金萍), Xi Zhao(赵茜), and Yu-Ren Shi(石玉仁). Chin. Phys. B, 2024, 33(6): 060501.
[9] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[10] Enhanced sensing of anharmonicities in a gain-based anti-PT symmetric system
Ya-Wei Zeng(曾亚伟), Tian-Le Yang(杨天乐), Qi-Yin Lin(林琪茵), and Wan-Jun Su(苏万钧). Chin. Phys. B, 2024, 33(12): 124201.
[11] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[12] Bessel vortices in spin-1 Bose-Einstein condensates with Zeeman splitting and spin-orbit coupling
Huan-Bo Luo(罗焕波), Xin-Feng Zhang(张鑫锋), Runhua Li(李润华), Yongyao Li(黎永耀), and Bin Liu(刘彬). Chin. Phys. B, 2024, 33(10): 100304.
[13] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[14] Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2023, 32(7): 077201.
[15] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
No Suggested Reading articles found!