Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010307    DOI: 10.1088/1674-1056/ae29fe
GENERAL Prev   Next  

Impact of decoherence on the metrological advantage of weak-value amplification

Yu-Han Yan(严雨涵)2,†, Yan-Ping Tan(谭艳萍)1,†, Yan-Yan Lu(陆艳艳)1,á, Shao-Jie Xiong(熊少杰)1,§, and Zhe Sun(孙哲)1,¶
1 College of Big Data and Intelligent Engineering, Guizhou University of Commerce, Guiyang 550014, China;
2 School of Physics, Hangzhou Normal University, Hangzhou 310036, China
Abstract  We present a theoretical investigation of weak-value amplification (WVA) under decoherence, quantifying its metrological capabilities through the quantum Fisher information (QFI). By modeling decoherence via Kraus operators acting before and after the weak measurement interaction, we derive exact expressions for the QFI governing parameter estimation of a weak coupling strength. These analytical results reveal the fundamental limitation imposed by decoherence on the QFI achievable via WVA. From these results, the optimal post-selection state that maximizes the QFI can be derived for different noise environments. Through paradigmatic examples, including amplitude damping and depolarizing channels, we demonstrate a key distinction: the optimal post-selection evolves with the noise strength in the amplitude damping channel, but is fixed in the depolarizing channel. This work provides both theoretical insights and practical guidance for optimizing metrological schemes based on WVA in realistic decoherent environments.
Keywords:  quantum metrology      weak-value amplification      quantum Fisher information  
Received:  06 October 2025      Revised:  13 November 2025      Accepted manuscript online:  09 December 2025
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175052 and 12405010), Hangzhou Joint Fund of the Zhejiang Provincial Natural Science Foundation of China (Grant No. LHZSD24A050001), the Hangzhou Leading Youth Innovation and Entrepreneurship Team Project (Grant No. TD2024005), the HZNU scientific Research and Innovation Team Project (Grant No. TD2025003), the Guizhou Province Higher Education Teaching Content and Curriculum System Reform Project (Grant No. 2023233), the Guizhou Education Department Young Talent in Science and Technology Program (Grant Nos. QianJiaoJi[2024]174 and QianJiaoJi[2024]178), and Guizhou Provincial Theoretical Innovation Project (Grant No. GZLCLH-2025-ZX).
Corresponding Authors:  Yan-Yan Lu, Shao-Jie Xiong, Zhe Sun     E-mail:  xiaoguai@gzsxy361.wecom.work;202410003@gzcc.edu.cn;sunzhe@hznu.edu.cn

Cite this article: 

Yu-Han Yan(严雨涵), Yan-Ping Tan(谭艳萍), Yan-Yan Lu(陆艳艳), Shao-Jie Xiong(熊少杰), and Zhe Sun(孙哲) Impact of decoherence on the metrological advantage of weak-value amplification 2026 Chin. Phys. B 35 010307

[1] Liu J, Yuan H, Lu X M and Wang X 2019 J. Phys. A: Math. Theor. 53 023001
[2] PLuca P, Augusto S, Markus O K, Roman S and Philipp T 2018 Rev. Mod. Phys. 90 035005
[3] Huang J H, Zhuang M and Lee C H 2024 Appl. Phys. Rev. 11 031302
[4] Helstrom C 1967 Phys. Lett. A 25 101
[5] Helstrom C 1968 IEEE Trans. Inform. Theory 14 234
[6] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[7] Yang J 2024 Phys. Rev. Lett. 132 250802
[8] Zhang L J, Datta A andWalmsley I A 2015 Phys. Rev. Lett. 114 210801
[9] Xu L, Liu Z X, Datta A, Knee G C, Lundeen J S, Lu Y Q and Zhang L J 2020 Phys. Rev. Lett. 125 080501
[10] Huang J H, Hu X Y, Dada A C, Lundeen J S, Jordan K M, Chen H and An J Q 2022 Phys. Rev. A 106 053704
[11] Chen G, Aharon N, Sun Y N, Zhang Z H, Zhang W H, He D Y, Tang J S, Xu X Y, Kedem Y, Li C F and Guo G C 2018 Nat. Commun. 9 93
[12] Kim Y, Yoo S Y and Kim Y H 2022 Phys. Rev. Lett. 128 040503
[13] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 1351 173601
[14] Starling D J, Dixon P B, Jordan A N and Howell J C 2010 Phys. Rev. A 82 063822
[15] Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F and Guo G C 2013 Phys. Rev. Lett. 111, 033604
[16] Huang J Z, Li Y J, Li H J and Zeng G H 2019 Phys. Rev. A 100 012109
[17] Fang S Z, Dai Y, Jiang Q W, Tan H T, Li G X and Wu Q L 2021 Chin. Phys. B 30 060601
[18] Xiong S J, Sun Z, Su Q P, Xi Z J, Yu L, Jin J S, Liu J M, Nori F and Yang C P 2021 Optica 8 1003
[19] Sun Z, Liu J, Ma J and Wang X G 2015 2015 Sci. Rep. 5 8444
[20] Sun Z, Ma J, Lu X M and Wang X G 2010 Phys. Rev. A 82 022306
[21] Knee G C, Briggs G A D, Benjamin S C and Gauge E M 2013 Phys. Rev. A 87 019906
[22] Song Q, Li H, Huang J, Huang P, Tan X, Tao Y, Shi C and Zeng G H 2023 Commun. Phys. 6 370
[23] Qiu J D, Li Z X, Xie L G, Luo L, H Yu, Ren C G, Zhang Z Y and Du J L 2021 Chin. Phys. B 30 064216
[24] Zhang M, Yu H M, Yuan H D, Wang X G, Dobrzanski R D and Liu J 2022 Phys. Rev. Research 4 043057
[25] Zhong W, Sun Z, Ma J, Wang X G and Nori F 2015 2015 Phys. Rev. A 87 022337
[26] Alves G B, Escher B M, Matos Filho R L, Zagury N and Davidovich L 2015 Phys. Rev. A 91 062107
[1] Optimal multi-parameter quantum metrology for frequencies of magnetic field
Zhenhua Long(龙振华) and Shengshi Pang(庞盛世). Chin. Phys. B, 2025, 34(8): 080301.
[2] Quantum-enhanced interferometry with unbalanced entangled coherent states
Jun Tang(汤俊), Zi-Hang Du(堵子航), Wei Zhong(钟伟), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2025, 34(2): 020303.
[3] Phase-matching enhanced quantum phase and amplitude estimation of a two-level system in a squeezed reservoir
Yan-Ling Li(李艳玲), Cai-Hong Liao(廖彩红), and Xing Xiao(肖兴). Chin. Phys. B, 2025, 34(1): 010307.
[4] Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states
Jian-Dong Zhang(张建东), Chuang Li(李闯), Lili Hou(侯丽丽), and Shuai Wang(王帅). Chin. Phys. B, 2025, 34(1): 010304.
[5] Improving cutoff frequency estimation via optimized π-pulse sequence
Wang-Sheng Zheng(郑王升), Chen-Xia Zhang(张晨霞), and Bei-Li Gong(龚贝利). Chin. Phys. B, 2025, 34(1): 010309.
[6] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[7] Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction
Zhiyao Hu(胡知遥), Qixian Li(李其贤), Xuanchen Zhang(张轩晨), He-Bin Zhang(张贺宾), Long-Gang Huang(黄龙刚), and Yong-Chun Liu(刘永椿). Chin. Phys. B, 2024, 33(8): 080601.
[8] Enhancing quantum metrology for multiple frequencies of oscillating magnetic fields by quantum control
Xin Lei(雷昕), Jingyi Fan(范静怡), and Shengshi Pang(庞盛世). Chin. Phys. B, 2024, 33(6): 060304.
[9] Parameter estimation in n-dimensional massless scalar field
Ying Yang(杨颖) and Jiliang Jing(荆继良). Chin. Phys. B, 2024, 33(3): 030307.
[10] Holevo bound independent of weight matrices for estimating two parameters of a qubit
Chang Niu(牛畅) and Sixia Yu(郁司夏). Chin. Phys. B, 2024, 33(2): 020304.
[11] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[12] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[13] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[14] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[15] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
No Suggested Reading articles found!