| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Diamond NV center quantum magnetic sensor using a dual-frequency broadband antenna |
| Ke-Qi Shi(施柯琦)1, Heng Hang(杭衡)1, Wen-Tao Lu(卢文韬)2, Jing-Cheng Huang(黄竟成)1, Na Li(李娜)1, Jin-Xu Wang(王金旭)1, Zeng-Bo Xu(许增博)4, Lin-Yan Yu(虞林嫣)1, Sheng-Kai Xia(夏圣开)3, Yu-Chen Bian(卞雨辰)2, and Guan-Xiang Du(杜关祥)1,† |
1 College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 4 School of Economics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
|
|
Abstract This paper presents a compact broadband antenna that overcomes bandwidth limitations in a diamond nitrogen-vacancy (NV) center-based quantum magnetic sensor. Conventional antennas struggle to achieve both broadband operation and compact integration, restricting the sensitivity and dynamic range of the sensor. The broadband antenna based on a dual-frequency monopole structure achieves a bandwidth extension of 777 MHz at the Zeeman splitting frequency of 2.87 GHz, with the dual resonant points positioned near 2.87 GHz. Additionally, high-resolution imaging of the microwave magnetic field on the antenna surface was performed using a diamond optical fiber probe, which verified the dual-frequency design principle. Experimental results using the proposed antenna demonstrate the outstanding performance of the NV center-based magnetic sensor: a sensitivity of 55 nT/Hz$^{1/2}$ and a dynamic range of up to 54.0 dB. Compared to sensors using conventional antennas, the performance has been significantly improved.
|
Received: 12 February 2025
Revised: 12 April 2025
Accepted manuscript online: 15 May 2025
|
|
PACS:
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
| |
07.55.Ge
|
(Magnetometers for magnetic field measurements)
|
| |
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2012600), the Science and Technology Plan Project of the State Administration of Market Regulation, China (Grant No. 2021MK039), and the Suqian Talent Elite Program (Grant No. SQQN202414). |
Corresponding Authors:
Guan-Xiang Du
E-mail: duguanxiang@njupt.edu.cn
|
Cite this article:
Ke-Qi Shi(施柯琦), Heng Hang(杭衡), Wen-Tao Lu(卢文韬), Jing-Cheng Huang(黄竟成), Na Li(李娜), Jin-Xu Wang(王金旭), Zeng-Bo Xu(许增博), Lin-Yan Yu(虞林嫣), Sheng-Kai Xia(夏圣开), Yu-Chen Bian(卞雨辰), and Guan-Xiang Du(杜关祥) Diamond NV center quantum magnetic sensor using a dual-frequency broadband antenna 2025 Chin. Phys. B 34 094205
|
[1] O’Brien J L 2007 Science 318 1567 [2] Gisin N and Thew R 2007 Nat. Photon. 1 165 [3] Childs A M, Preskill J and Renes J 2000 J. Mod. Opt. 47 155 [4] Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers L J, McMurtrie R L, Manson N B, Jelezko F and Wrachtrup J 2009 Phys. Rev. Lett. 102 195506 [5] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 81 [6] Zheng D 2010 Study and manipulation of photoluminescent NV color center in diamond Ph.D. dissertation (Shanghai: East China Normal University) [7] Savvin A, Dormidonov A, Smetanina E, Mitrokhin V, Lipatov E, Genin D, Potanin S, Yelisseyev A and Vins V 2021 Nat. Commun. 12 7118 [8] Dmitriev A K and Vershovskii A K 2014 J. Phys. Conf. Ser. 541 012090 [9] Bucher D B, Aude Craik D P L, Backlund M P, Turner M J, Ben Dor O, Glenn D R and Walsworth R L 2019 Nat. Protoc. 14 2707 [10] Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J, Weis C D, Schenkel T and Awschalom D D 2010 Nat. Phys. 6 668 [11] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Gurudev Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644 [12] Yang X, Zhang N, Yuan H, Bian G, Fan P and Li M 2019 AIP Adv. 9 075213 [13] Jia W, Shi Z, Qin X, Rong X, Du J 2018 Rev. Sci. Instrum. 89 064705 [14] Babashah H, Losero E and Galland C 2024 Open Res. Eur. 4 44 [15] Bayat K, Choy J, Baroughi M F, Meesala S and Loncar M 2014 Nano Lett. 14 1208 [16] Bürgler B, Sjolander T F, Brinza O, Tallaire A, Achard J and Maletinsky P 2023 npj Quantum Inf. 9 56 [17] Kapitanova P, Soshenko V, Vorobyov V, Dobrykh D, Bolshedvorskiih S, Sorokin V and Akimov A 2017 AIP Conf. Proc. 1874 030017 [18] LuWT, Xi S K, Chen A Q, He K H, Xu Z B, Chen Y H,Wang Y, Ge S Y, An S H,Wu J F, Ma Y H and Du G X 2024 Chin. Phys. B 33 080305 [19] Schirhagl R, Chang K, LoretzMand Degen C L 2014 Annu. Rev. Phys. Chem. 65 1545 [20] Doherty M W, Dolde F, Fedder H, Jelezko F, Wrachtrup J, Manson N B and Hollenberg L C L 2012 Phys. Rev. B 85 205203 [21] Adam Gali 2009 Phys. Rev. B 79 235210 [22] Zhao X T, He F Y, Xue Y W, Ma W H, Yin X Z, Xia S K, Zeng M J and Du G X 2024 Chin. Phys. B 33 048502 [23] Yang B, Dong M M, He W H, Liu Y, Feng C M, Wang Y J and Du G X 2019 IEEE Trans. Microwave Theory Tech. 67 245 [24] Danuor P, Moon J I and Jung Y B 2023 Sci. Rep. 13 9982 [25] Wei H R, He W H, Li Q Z, Yu Y Y, Xu R X, Zhou J, Shen J and Chen W 2023 Ceram. Int. 49 28449 [26] Appel P, Ganzhorn M, Neu E and Maletinsky P 2015 New J. Phys. 17 112001 [27] Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105 [28] Ibrahim M I, Foy C, Englund D R and Han R 2021 IEEE J. Solid-State Circuits 56 1001 [29] Cui M M, Shen F Z, Qiao Y Y, Du G X, Zhuo X, Zang J W, Zhang Z Y, Wang Y, Li L and Gao Y 2022 Electron. Lett. 58 893 [30] Gao Y, Zeng Y, Cui M M, Qiao Y Y, Yang X, Lin C N, Zhao J L, Li L, Wang Y and Shan C X 2022 IEEE Trans. Instrum. Meas. 71 2005112 [31] Xia S K, Lu W T, Zhao X T, Xue Y, Xu Z B, Ge S Y, Wang Y, Yu L Y, Bian Y C, An S H, Yang B, Xiang J J and Du G X 2024 Chin. Phys. B 33 054202 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|