Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094205    DOI: 10.1088/1674-1056/add900
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Diamond NV center quantum magnetic sensor using a dual-frequency broadband antenna

Ke-Qi Shi(施柯琦)1, Heng Hang(杭衡)1, Wen-Tao Lu(卢文韬)2, Jing-Cheng Huang(黄竟成)1, Na Li(李娜)1, Jin-Xu Wang(王金旭)1, Zeng-Bo Xu(许增博)4, Lin-Yan Yu(虞林嫣)1, Sheng-Kai Xia(夏圣开)3, Yu-Chen Bian(卞雨辰)2, and Guan-Xiang Du(杜关祥)1,†
1 College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
4 School of Economics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  This paper presents a compact broadband antenna that overcomes bandwidth limitations in a diamond nitrogen-vacancy (NV) center-based quantum magnetic sensor. Conventional antennas struggle to achieve both broadband operation and compact integration, restricting the sensitivity and dynamic range of the sensor. The broadband antenna based on a dual-frequency monopole structure achieves a bandwidth extension of 777 MHz at the Zeeman splitting frequency of 2.87 GHz, with the dual resonant points positioned near 2.87 GHz. Additionally, high-resolution imaging of the microwave magnetic field on the antenna surface was performed using a diamond optical fiber probe, which verified the dual-frequency design principle. Experimental results using the proposed antenna demonstrate the outstanding performance of the NV center-based magnetic sensor: a sensitivity of 55 nT/Hz$^{1/2}$ and a dynamic range of up to 54.0 dB. Compared to sensors using conventional antennas, the performance has been significantly improved.
Keywords:  nitrogen-vacancy center      broadband antenna      quantum magnetometry      dual-frequency structure  
Received:  12 February 2025      Revised:  12 April 2025      Accepted manuscript online:  15 May 2025
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2012600), the Science and Technology Plan Project of the State Administration of Market Regulation, China (Grant No. 2021MK039), and the Suqian Talent Elite Program (Grant No. SQQN202414).
Corresponding Authors:  Guan-Xiang Du     E-mail:  duguanxiang@njupt.edu.cn

Cite this article: 

Ke-Qi Shi(施柯琦), Heng Hang(杭衡), Wen-Tao Lu(卢文韬), Jing-Cheng Huang(黄竟成), Na Li(李娜), Jin-Xu Wang(王金旭), Zeng-Bo Xu(许增博), Lin-Yan Yu(虞林嫣), Sheng-Kai Xia(夏圣开), Yu-Chen Bian(卞雨辰), and Guan-Xiang Du(杜关祥) Diamond NV center quantum magnetic sensor using a dual-frequency broadband antenna 2025 Chin. Phys. B 34 094205

[1] O’Brien J L 2007 Science 318 1567
[2] Gisin N and Thew R 2007 Nat. Photon. 1 165
[3] Childs A M, Preskill J and Renes J 2000 J. Mod. Opt. 47 155
[4] Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers L J, McMurtrie R L, Manson N B, Jelezko F and Wrachtrup J 2009 Phys. Rev. Lett. 102 195506
[5] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 81
[6] Zheng D 2010 Study and manipulation of photoluminescent NV color center in diamond Ph.D. dissertation (Shanghai: East China Normal University)
[7] Savvin A, Dormidonov A, Smetanina E, Mitrokhin V, Lipatov E, Genin D, Potanin S, Yelisseyev A and Vins V 2021 Nat. Commun. 12 7118
[8] Dmitriev A K and Vershovskii A K 2014 J. Phys. Conf. Ser. 541 012090
[9] Bucher D B, Aude Craik D P L, Backlund M P, Turner M J, Ben Dor O, Glenn D R and Walsworth R L 2019 Nat. Protoc. 14 2707
[10] Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J, Weis C D, Schenkel T and Awschalom D D 2010 Nat. Phys. 6 668
[11] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Gurudev Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[12] Yang X, Zhang N, Yuan H, Bian G, Fan P and Li M 2019 AIP Adv. 9 075213
[13] Jia W, Shi Z, Qin X, Rong X, Du J 2018 Rev. Sci. Instrum. 89 064705
[14] Babashah H, Losero E and Galland C 2024 Open Res. Eur. 4 44
[15] Bayat K, Choy J, Baroughi M F, Meesala S and Loncar M 2014 Nano Lett. 14 1208
[16] Bürgler B, Sjolander T F, Brinza O, Tallaire A, Achard J and Maletinsky P 2023 npj Quantum Inf. 9 56
[17] Kapitanova P, Soshenko V, Vorobyov V, Dobrykh D, Bolshedvorskiih S, Sorokin V and Akimov A 2017 AIP Conf. Proc. 1874 030017
[18] LuWT, Xi S K, Chen A Q, He K H, Xu Z B, Chen Y H,Wang Y, Ge S Y, An S H,Wu J F, Ma Y H and Du G X 2024 Chin. Phys. B 33 080305
[19] Schirhagl R, Chang K, LoretzMand Degen C L 2014 Annu. Rev. Phys. Chem. 65 1545
[20] Doherty M W, Dolde F, Fedder H, Jelezko F, Wrachtrup J, Manson N B and Hollenberg L C L 2012 Phys. Rev. B 85 205203
[21] Adam Gali 2009 Phys. Rev. B 79 235210
[22] Zhao X T, He F Y, Xue Y W, Ma W H, Yin X Z, Xia S K, Zeng M J and Du G X 2024 Chin. Phys. B 33 048502
[23] Yang B, Dong M M, He W H, Liu Y, Feng C M, Wang Y J and Du G X 2019 IEEE Trans. Microwave Theory Tech. 67 245
[24] Danuor P, Moon J I and Jung Y B 2023 Sci. Rep. 13 9982
[25] Wei H R, He W H, Li Q Z, Yu Y Y, Xu R X, Zhou J, Shen J and Chen W 2023 Ceram. Int. 49 28449
[26] Appel P, Ganzhorn M, Neu E and Maletinsky P 2015 New J. Phys. 17 112001
[27] Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105
[28] Ibrahim M I, Foy C, Englund D R and Han R 2021 IEEE J. Solid-State Circuits 56 1001
[29] Cui M M, Shen F Z, Qiao Y Y, Du G X, Zhuo X, Zang J W, Zhang Z Y, Wang Y, Li L and Gao Y 2022 Electron. Lett. 58 893
[30] Gao Y, Zeng Y, Cui M M, Qiao Y Y, Yang X, Lin C N, Zhao J L, Li L, Wang Y and Shan C X 2022 IEEE Trans. Instrum. Meas. 71 2005112
[31] Xia S K, Lu W T, Zhao X T, Xue Y, Xu Z B, Ge S Y, Wang Y, Yu L Y, Bian Y C, An S H, Yang B, Xiang J J and Du G X 2024 Chin. Phys. B 33 054202
[1] Spin-based magnetic detection of optically trapped single cell in microfluidic channel
Jun Yin(殷俊), Sanyou Chen(陈三友), Yihao Yan(燕一皓), Mengqi Wang(王孟祺), Ya Wang(王亚), Yiheng Lin(林毅恒), Qi Zhang(张琪), and Fazhan Shi(石发展). Chin. Phys. B, 2025, 34(7): 070704.
[2] Design of compact integrated diamond nitrogen-vacancy center quantum probe
Sheng-Kai Xia(夏圣开), Wen-Tao Lu(卢文韬), Xu-Tong Zhao(赵旭彤), Ya-Wen Xue(薛雅文), Zeng-Bo Xu(许增博), Shi-Yu Ge(葛仕宇), Yang Wang(汪洋), Lin-Yan Yu(虞林嫣), Yu-Chen Bian(卞雨辰), Si-Han An(安思瀚), Bo Yang(杨博), Jian-Jun Xiang(向建军), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(5): 054202.
[3] Micron-resolved quantum precision measurement of magnetic field at the Tesla level
Si-Han An(安思瀚), Shi-Yu Ge(葛仕宇), Wen-Tao Lu(卢文韬), Guo-Bin Chen(陈国彬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Cheng-Kun Wang(王成坤), Lin-Yan Yu(虞林嫣), Zhi-Qiang Zhang(张致强), Yang Wang(汪洋), Gui-Jin Tang(唐贵进), Hua-Fu Cheng(程华富), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(12): 120305.
[4] Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field
Yangpeng Wang(王杨鹏), Rujian Zhang(章如健), Yan Yang(杨燕), Qin Wu(吴琴), Zhifei Yu(于志飞), and Bing Chen(陈冰). Chin. Phys. B, 2023, 32(7): 070301.
[5] Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system
Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)†. Chin. Phys. B, 2020, 29(10): 107801.
[6] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[7] Creating nitrogen–vacancy ensembles in diamond for coupling with flux qubit
Ya-Rui Zheng(郑亚锐), Jian Xing(邢健), Yan-Chun Chang(常彦春), Zhi-Guang Yan(闫智广), Hui Deng(邓辉), Yu-Lin Wu(吴玉林), Li Lü(吕力), Xin-Yu Pan(潘新宇), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2017, 26(2): 020305.
[8] Time-bin-encoding-based remote states generation of nitrogen-vacancy centers through noisy channels
Su Shi-Lei (苏石磊), Chen Li (陈丽), Guo Qi (郭奇), Wang Hong-Fu (王洪福), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2015, 24(2): 020305.
[9] Implementation of a nonlocal N-qubit conditional phase gate using the nitrogen-vacancy center and microtoroidal resonator coupled systems
Cao Cong (曹聪), Liu Gang (刘刚), Zhang Ru (张茹), Wang Chuan (王川). Chin. Phys. B, 2014, 23(4): 040304.
[10] Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen–vacancy center in diamond
Zhang Duo (张多), Li Jia-Hua (李家华), Yang Xiao-Xue (杨晓雪). Chin. Phys. B, 2014, 23(4): 044204.
No Suggested Reading articles found!