Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120305    DOI: 10.1088/1674-1056/ad7e9b
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Micron-resolved quantum precision measurement of magnetic field at the Tesla level

Si-Han An(安思瀚)1, Shi-Yu Ge(葛仕宇)1, Wen-Tao Lu(卢文韬)2, Guo-Bin Chen(陈国彬)3, Sheng-Kai Xia(夏圣开)4, Ai-Qing Chen(陈爱庆)1, Cheng-Kun Wang(王成坤)1, Lin-Yan Yu(虞林嫣)1, Zhi-Qiang Zhang(张致强)1, Yang Wang(汪洋)5, Gui-Jin Tang(唐贵进)1, Hua-Fu Cheng(程华富)6, and Guan-Xiang Du(杜关祥)1,†
1 College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 The School of Mechanical and Electrical Engineering, Suqian College, Suqian 223800, China;
4 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
5 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
6 Yichang Testing Technique R&D Institute, Yichang 443003, China
Abstract  We develop a quantum precision measurement method for magnetic field at the Tesla level by utilizing a fiber diamond magnetometer. Central to our system is a micron-sized fiber diamond probe positioned on the surface of a coplanar waveguide made of nonmagnetic materials. Calibrated with a nuclear magnetic resonance magnetometer, this probe demonstrates a broad magnetic field range from 10 mT to 1.5 T with a nonlinear error better than 0.0028% under a standard magnetic field generator and stability better than 0.0012% at a 1.5 T magnetic field. Finally, we demonstrate quantitative mapping of the vector magnetic field on the surface of a permanent magnet using the diamond magnetometer.
Keywords:  nitrogen-vacancy center      fiber diamond magnetometer      precision measurement  
Received:  29 July 2024      Revised:  20 September 2024      Accepted manuscript online:  24 September 2024
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  75.50.Ww (Permanent magnets)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFB2012600).
Corresponding Authors:  Guan-Xiang Du     E-mail:  duguanxiang@njupt.edu.cn

Cite this article: 

Si-Han An(安思瀚), Shi-Yu Ge(葛仕宇), Wen-Tao Lu(卢文韬), Guo-Bin Chen(陈国彬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Cheng-Kun Wang(王成坤), Lin-Yan Yu(虞林嫣), Zhi-Qiang Zhang(张致强), Yang Wang(汪洋), Gui-Jin Tang(唐贵进), Hua-Fu Cheng(程华富), and Guan-Xiang Du(杜关祥) Micron-resolved quantum precision measurement of magnetic field at the Tesla level 2024 Chin. Phys. B 33 120305

[1] Khan M A, Sun J, Li B D, Przybysz A and Kosel J 2012 Eng. Res. Express 3 022005
[2] Javor J, Stange A, Pollock C, Fuhr N and Bishop D J 2020 Microsyst. Nanoeng. 6 71
[3] Li Z, Ouyang Z R, Leng Z K, Zhang Y B, Zhang S, Lu Y F and Yan Z D 2022 Electronics 11 970
[4] Wang X L and Wang F H 2020 J. Magn. Mater. Devices 6 63
[5] Xu Z, Liu J and Zhang X X 2013 Modern Electronics Technique 12 29
[6] Qu S S and He Z W 2013 Electrical Measurement & Instrumentation 50 98
[7] Li X, Xiao L Z, Liu H B, Zhang Z F, Guo B X, Yu H J and Zong F R 2013 Acta Phys. Sin. 62 147602 (in Chinese)
[8] Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 92 076401
[9] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Gurudev Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[10] Li Z H, Wang T Y, Guo Q, Guo H, Wen H F, Tang J and Liu J 2021 Acta Phys. Sin 70 147601 (in Chinese)
[11] Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105
[12] Pham L M, Sage D L, Stanwix P L, Yeung T K, Glenn D, Trifonov A, Cappellaro P, Hemmer P R, Lukin M D, Park H, Yacoby A and Walsworth R L 2011 New J. Phys. 13 045021
[13] Duan D, Du G X, Kavatamane V K, Arumugam S, Tzeng Y K, Chang H C and Balasubramanian G 2019 Opt. Express 27 6734
[14] Yahata K, Matsuzaki Y, Saito S, Watanabe H and Ishi-Hayase S 2019 Appl. Phys. Lett. 114 022404
[15] Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J and von Borczyskowski C 1997 Science 276 2012
[16] Doherty M W, Michl J, Dolde F, Jakobi I, Neumann P, Manson N B and Wrachtrup J 2014 New J. Phys. 16 063067
[17] Barson M S J, Krausz E, Manson N B and Doherty M W 2019 Nanophotonics 8 1985
[18] Manson N B, Harrison J P and Sellars M J 2006 Phys. Rev. B 74 104303
[19] Chen G B, Gu B X, He W H, Guo Z G and Du G X 2020 IEEE J. Quantum Electron. 56 7500106
[20] Acosta V M, Bauch E, Ledbetter M P, Waxman A, Bouchard L S and Budker D 2010 Phys. Rev. Lett. 104 070801
[1] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[2] Design of compact integrated diamond nitrogen-vacancy center quantum probe
Sheng-Kai Xia(夏圣开), Wen-Tao Lu(卢文韬), Xu-Tong Zhao(赵旭彤), Ya-Wen Xue(薛雅文), Zeng-Bo Xu(许增博), Shi-Yu Ge(葛仕宇), Yang Wang(汪洋), Lin-Yan Yu(虞林嫣), Yu-Chen Bian(卞雨辰), Si-Han An(安思瀚), Bo Yang(杨博), Jian-Jun Xiang(向建军), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(5): 054202.
[3] Determining the tilt of the Raman laser beam using an optical method for atom gravimeters
Hua-Qing Luo(骆华清), Yao-Yao Xu(徐耀耀)†, Jia-Feng Cui(崔嘉丰)‡, Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Xiao-Chun Duan(段小春), and Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2024, 33(12): 123701.
[4] Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field
Yangpeng Wang(王杨鹏), Rujian Zhang(章如健), Yan Yang(杨燕), Qin Wu(吴琴), Zhifei Yu(于志飞), and Bing Chen(陈冰). Chin. Phys. B, 2023, 32(7): 070301.
[5] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋),Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[6] Quantum-enhanced optical precision measurement assisted by low-frequency squeezed vacuum states
Guohui Kang(康国辉), Jinxia Feng(冯晋霞), Lin Cheng(程琳), Yuanji Li(李渊骥), and Kuanshou Zhang(张宽收). Chin. Phys. B, 2023, 32(10): 104204.
[7] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[8] Preparation of a two-state mixture of ultracold fermionic atoms with balanced population subject to the unstable magnetic field
Donghao Li(李东豪), Lianghui Huang(黄良辉), Guoqi Bian(边国旗), Jie Miao(苗杰), Liangchao Chen(陈良超), Zengming Meng(孟增明), Wei Han(韩伟), and Pengjun Wang(王鹏军). Chin. Phys. B, 2021, 30(9): 090303.
[9] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[10] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[11] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[12] Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system
Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)†. Chin. Phys. B, 2020, 29(10): 107801.
[13] Quantum information processing with nitrogen-vacancy centers in diamond
Gang-Qin Liu(刘刚钦), Xin-Yu Pan(潘新宇). Chin. Phys. B, 2018, 27(2): 020304.
[14] Creating nitrogen–vacancy ensembles in diamond for coupling with flux qubit
Ya-Rui Zheng(郑亚锐), Jian Xing(邢健), Yan-Chun Chang(常彦春), Zhi-Guang Yan(闫智广), Hui Deng(邓辉), Yu-Lin Wu(吴玉林), Li Lü(吕力), Xin-Yu Pan(潘新宇), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2017, 26(2): 020305.
[15] Precision measurement with atom interferometry
Wang Jin (王谨). Chin. Phys. B, 2015, 24(5): 053702.
No Suggested Reading articles found!