|
Special Issue:
SPECIAL TOPIC — Quantum communication and quantum network
|
| SPECIAL TOPIC — Quantum communication and quantum network |
Prev
Next
|
|
|
Effect of quantum measurement errors on witnessing network topology |
| Shu-Yuan Yang(杨舒媛)1, Kan He(贺衎)2,†, and Ming-Xing Luo(罗明星)3,‡ |
1 School of Mathematics, North University of China, Taiyuan 030051, China; 2 College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China; 3 School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China |
|
|
|
|
Abstract The fragility and stochastic behavior of quantum sources make it crucial to witness the topology of quantum networks. Most previous theoretical methods are based on perfect assumptions of quantum measurements. In this work, we propose a method to witness network topology under imperfect assumptions of quantum measurements. We show that the discrimination between star and triangle networks depends on the specific error tolerances of local measurements. This extends recent results for witnessing the triangle network [Phys. Rev. Lett. 132 240801 (2024)].
|
Received: 15 May 2025
Revised: 10 June 2025
Accepted manuscript online: 12 June 2025
|
|
PACS:
|
03.67.-a
|
(Quantum information)
|
| |
03.67.Hk
|
(Quantum communication)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12271394 and 62172341) and the Sichuan Natural Science Foundation (Grant Nos. 2024NSFSC1365 and 2024NSFSC1375). |
Corresponding Authors:
Kan He, Ming-Xing Luo
E-mail: hekan@tyut.edu.cn,hekanquantum@163.com;mxluo@swjtu.edu.cn
|
Cite this article:
Shu-Yuan Yang(杨舒媛), Kan He(贺衎), and Ming-Xing Luo(罗明星) Effect of quantum measurement errors on witnessing network topology 2025 Chin. Phys. B 34 090302
|
[1] Lago-Rivera D, Rakonjac J V, Grandi S and de Riedmatten H 2023 Nat. Commun. 14 1889 [2] Cirac J I, Ekert A K, Huelga S F and Macchiavello C 1999 Phys. Rev. A 59 4249 [3] Gisin N and Thew R 2007 Nat. Photonics 1 165 [4] Kimble H J 2008 Nature 453 1023 [5] Scarani V, H B P, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301 [6] Proctor T J, Knott P A and Dunningham J A 2018 Phys. Rev. Lett. 120 080501 [7] Xu F, Ma X, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002 [8] Chen Y A, Zhang Q Z, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F, Wang X B, Peng C Z and Pan J W 2021 Nature 589 214 [9] Zhang Z and Zhang Q 2021 Quantum Sci. Technol. 6 043001 [10] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880 [11] Fang K, Zhao J T, Li X F, Li Y F and Duan R Y 2023 Sci. China Inf. Sci 66 180509 [12] Collins O A, Jenkins S D, Kuzmich A and Kennedy T A B 2007 Phys. Rev. Lett. 98 060502 [13] Weinbrenner L T, Vandré L, Coopmans T and Gühne O 2024 Phys. Rev. A 109 052611 [14] Shchukin E, Schmidt F and Loock P V 2019 Phys. Rev. A 100 032322 [15] Hu X M, Zhang C, Guo Y,Wang F X, XingWB, Huang C X, Liu B H, Huang Y F, Li C F, Guo G C, Gao X, Pivoluska M and Huber M 2021 Phys. Rev. Lett. 127 110505 [16] Ma H Y, Qin G Q, Fan X K and Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [17] Yang X, Yang Y H and Luo M X 2022 Phys. Rev. Res. 4 013153 [18] Chen D T, Doolittle B, Larson J, Saleem Z H and Chitambar E 2023 PRX Quantum 4 040347 [19] Weinbrenner L T, Prasannan N, Hansenne K, Denker S, Sperling J, Brecht B, Silberhorn C and Gühne O 2024 Phys. Rev. Lett. 132 240802 [20] Chaves R 2016 Phys. Rev. Lett. 116 010402 [21] Rosset D, Branciard C, Barnea T J, Pütz G, Brunner N and Gisin N 2016 Phys. Rev. Lett. 116 010403 [22] Gisin N, Mei Q, Tavakoli A, Renou M O and Brunner N 2017 Phys. Rev. A 96 020304 [23] Luo M X 2018 Phys. Rev. Lett. 120 140402 [24] Tavakoli A, Gisin N and Branciard C 2021 Phys. Rev. Lett. 126 220401 [25] Supić I, Bancal J D, Cai Y and Brunner N 2022 Phys. Rev. A 105 022206 [26] Pozas-Kerstjens A, Gisin N and Tavakoli A 2022 Phys. Rev. Lett. 128 010403 [27] Wang N N, Yang X, Yang Y H, Zhang C, Luo M X, Liu B H, Huang Y F, Li C F and Guo G C 2025 Phys. Rev. Lett. 134 080202 [28] Luo M X, Yang X and Pozas-Kerstjens A 2024 Phys. Rev. A 110 022617 [29] Luo M X and Fei S M 2024 Adv. Quantum Tech. 7 2400021 [30] Mao Y L, Chen H, Guo B X, Liu S T, Li Z D, Luo M X and Fan J Y 2024 Phys. Rev. Lett. 132 240801 [31] Yang S Y, He K, Hou J C, Ma Z H, Fei S M and Luo M X 2024 Phys. Rev. A 110 032437 [32] Rosset D, Ferretti-Schöbitz R, Bancal J D, Gisin N and Liang Y C 2012 Phys. Rev. A 86 062325 [33] James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312 [34] Moroder T, Gühne O, Beaudry N, Piani M and Lütkenhaus N 2010 Phys. Rev. A 81 052342 [35] Morelli S, Yamasaki H, Huber M and Tavakoli A 2022 Phys. Rev. Lett. 128 250501 [36] Tavakoli A 2024 Phys. Rev. Lett. 132 070204 [37] Cao H, Morelli S, Rozema L A, Zhang C, Tavakoli A and Walther P 2024 Phys. Rev. Lett. 133 150201 [38] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880 [39] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|