INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A fractional-order improved FitzHugh-Nagumo neuron model |
Pushpendra Kumar1,2,†,‡ and Vedat Suat Erturk3,† |
1 Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey; 2 Department of Mathematics, Mathematics Research Center, Near East University TRNC, Mersin 10, Turkey; 3 Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, Atakum-55200, Samsun, Turkey |
|
|
Abstract We propose a fractional-order improved FitzHugh-Nagumo (FHN) neuron model in terms of a generalized Caputo fractional derivative. Following the existence of a unique solution for the proposed model, we derive the numerical solution using a recently proposed L1 predictor-corrector method. The given method is based on the L1-type discretization algorithm and the spline interpolation scheme. We perform the error and stability analyses for the given method. We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns, chaotic patterns, and quasi-periodic patterns. The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics, which are inherent to many biological systems.
|
Received: 02 July 2024
Revised: 09 September 2024
Accepted manuscript online: 23 October 2024
|
PACS:
|
87.19.lj
|
(Neuronal network dynamics)
|
|
45.10.Hj
|
(Perturbation and fractional calculus methods)
|
|
82.40.Bj
|
(Oscillations, chaos, and bifurcations)
|
|
Corresponding Authors:
Pushpendra Kumar
E-mail: kumarsaraswatpk@gmail.com
|
Cite this article:
Pushpendra Kumar and Vedat Suat Erturk A fractional-order improved FitzHugh-Nagumo neuron model 2025 Chin. Phys. B 34 018704
|
[1] Zhu Z, Wang R and Zhu F 2018 Front. Neuro. 12 122 [2] Hodgkin A L and Huxley A F 1952 Jour. Physio. 117 500 [3] Morris C and Lecar H 1981 Bioph. J. 35 193 [4] Wu X, Ma J, Yuan L and Liu Y 2014 Nonlinear Dyn. 75 113 [5] Chay T R 1985 Physica D 16 233 [6] Xu Q, Tan X, Zhu D, Bao H, Hu Y and Bao B 2020 Chaos Soliton. Fract. 141 110353 [7] Panahi S, Jafari S, Khalaf A J M, Rajagopal K, Pham V T and Alsaadi F E 2018 Chin. J. Phy. 56 2254 [8] Gu H, Pan B, Chen G and Duan L 2014 Nonlinear Dyn. 78 391 [9] FitzHugh R 1961 Bioph. J. 1 445 [10] Chavarette F R, Balthazar J M, Peruzzi N J and Rafikov M 2009 Commi. Nonl. Sci. Num. Simu. 14 892 [11] Cai J, Bao H, Xu Q, Hua Z and Bao B 2021 Nonlinear Dyn. 104 4379 [12] Hayati M, Nouri M, Abbott D and Haghiri S 2015 IEEE Tran. Cir. Sys. II: Expr. Bri. 63 463 [13] Cai J, Bao H, Chen M, Xu Q and Bao B 2022 IEEE Tran. Cir. Sys. I: Regu. Pap. 69 2916 [14] Arena P, Patané L and Spinosa A G 2019 Nonlinear Dyn. 97 1011 [15] Duarte J, Silva L and Ramos J S 2006 Nonlinear Dyn. 44 231 [16] Guo Y,Wang L, Dong Q and Lou X 2021 Math. Compu. Simu. 181 430 [17] Yao Y and Ma J 2018 Cogni. Neurody. 12 343 [18] Xu Q, Chen X, Chen B, Wu H, Li Z and Bao H 2023 Nonlinear Dyn. 111 8737 [19] Deng H, Gui R and Yao Y 2023 Chin. Phys. B 32 120501 [20] Guo Z H, Li Z J,WangMJ and MaML 2023 Chin. Phys. B 32 038701 [21] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier) pp. 69-212 [22] Podlubny I 1998 Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications (San Diego: Elsevier) pp. 41-117 [23] Oldham K and Spanier J 1974 The fractional calculus theory and applications of differentiation and integration to arbitrary order (New York: Elsevier) pp. 46-59 [24] Caputo M and Fabrizio M 2015 Prog. Frac. Diff. Appli. 1 73 [25] Atangana A and Baleanu D 2016 Ther. Sci. 20 763769 [26] Almeida R 2017 Commi. Nonl. Sci. Num. Simu. 44 460 [27] Sousa J V D C, Frederico G S and De Oliveira E C 2020 Compu. Appl. Math. 39 1 [28] Odibat Z and Baleanu D 2022 Chin. J. Phy. 77 1003 [29] Odibat Z and Baleanu D 2020 Appl. Nume. Math. 156 94 [30] Erturk V S and Kumar P 2020 Chaos Soliton. Fract. 139 110280 [31] Etemad S, Avci I, Kumar P, Baleanu D and Rezapour S 2022 Chaos Soliton. Fract. 162 112511 [32] Kumar P and Erturk V S 2021 Chaos Soliton. Fract. 144 110672 [33] Kumar P, Erturk V S, Banerjee R, Yavuz M and Govindaraj V 2021 Phys. Scr. 96 124044 [34] Kumar P, Erturk V S and Murillo-Arcila M 2021 Chaos Soliton. Fract. 150 111091 [35] Kumar P, Erturk V S, Tyagi S, Banas J and Manickam A 2023 Inter. Jour. Dyn. Cont. 11 2179 [36] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3 [37] Daftardar-Gejji V, Sukale Y and Bhalekar S 2014 Appl. Mathe. Comp. 244 158 [38] Jhinga A and Daftardar-Gejji V 2019 Comp. Appl. Mathe. 38 166 [39] Su X and Zhou Y 2022 Frac. Fract. 6 516 [40] Odibat Z, Erturk V S, Kumar P and Govindaraj V 2021 Phys. Scr. 96 125213 [41] Sivalingam S M, Kumar P and Govindaraj V 2023 Math. Compu. Simu. 213 302 [42] Jhinga A and Daftardar-Gejji V 2018 Appl. Mathe. Comp. 336 418 [43] Sivalingam S M, Kumar P, Trinh H and Govindaraj V 2024 Math. Compu. Simu. 220 462 [44] Saçu·I E 2024 Jour. Compu. Elect. 23 188 [45] Jun D, Guang-Jun Z, Yong X, Hong Y and JueW2014 Cogn. Neuro. 8 167 [46] Kaslik E 2017 Frac. Calcu. Appl. Anal. 20 623 [47] Yu Y, Shi M, Kang H, Chen M and Bao B 2020 Nonlinear Dyn. 100 891 [48] Mondal A, Sharma S K, Upadhyay R K and Mondal A 2019 Sci. Rep. 9 15721 [49] TekaWW, Upadhyay R K and Mondal A 2018 Commi. Nonl. Sci. Num. Simu. 56 161 [50] Silva-Juárez A, Tlelo-Cuautle E, De La Fraga L G and Li R 2020 J. Adv. Res. 25 77 [51] Malik S A and Mir A H 2020 IEEE Tran. Emer. Top. Compu. Inte. 5 792 [52] Tolba M F, Elsafty A H, Armanyos M, Said L A, Madian A H and Radwan A G 2019 Micro. Jour. 89 56 [53] Khanday F A, Kant N A, Dar M R, Zulkifli T Z A and Psychalinos C 2018 IEEE Tran. Neur. Net. Lear. Sys. 30 2108 [54] Alidousti J and Ghaziani R K 2017 Math. Mode. Compu. Simu. 9 390 [55] Al-Qurashi M, Rashid S, Jarad F, Ali E and Egami R H 2023 Res. Phys. 48 106405 [56] Katugampola U N 2011 Appl. Math. Comp. 218 860 [57] Daftardar-Gejji V and Jafari H 2006 J. Math. Anal. Appl. 316 753 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|