Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 018704    DOI: 10.1088/1674-1056/ad8a46
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A fractional-order improved FitzHugh-Nagumo neuron model

Pushpendra Kumar1,2,†,‡ and Vedat Suat Erturk3,†
1 Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey;
2 Department of Mathematics, Mathematics Research Center, Near East University TRNC, Mersin 10, Turkey;
3 Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, Atakum-55200, Samsun, Turkey
Abstract  We propose a fractional-order improved FitzHugh-Nagumo (FHN) neuron model in terms of a generalized Caputo fractional derivative. Following the existence of a unique solution for the proposed model, we derive the numerical solution using a recently proposed L1 predictor-corrector method. The given method is based on the L1-type discretization algorithm and the spline interpolation scheme. We perform the error and stability analyses for the given method. We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns, chaotic patterns, and quasi-periodic patterns. The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics, which are inherent to many biological systems.
Keywords:  FitzHugh-Nagumo neuron model      generalized Caputo fractional derivative      L1 predictor-corrector method      stability      error estimation  
Received:  02 July 2024      Revised:  09 September 2024      Accepted manuscript online:  23 October 2024
PACS:  87.19.lj (Neuronal network dynamics)  
  45.10.Hj (Perturbation and fractional calculus methods)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
Corresponding Authors:  Pushpendra Kumar     E-mail:  kumarsaraswatpk@gmail.com

Cite this article: 

Pushpendra Kumar and Vedat Suat Erturk A fractional-order improved FitzHugh-Nagumo neuron model 2025 Chin. Phys. B 34 018704

[1] Zhu Z, Wang R and Zhu F 2018 Front. Neuro. 12 122
[2] Hodgkin A L and Huxley A F 1952 Jour. Physio. 117 500
[3] Morris C and Lecar H 1981 Bioph. J. 35 193
[4] Wu X, Ma J, Yuan L and Liu Y 2014 Nonlinear Dyn. 75 113
[5] Chay T R 1985 Physica D 16 233
[6] Xu Q, Tan X, Zhu D, Bao H, Hu Y and Bao B 2020 Chaos Soliton. Fract. 141 110353
[7] Panahi S, Jafari S, Khalaf A J M, Rajagopal K, Pham V T and Alsaadi F E 2018 Chin. J. Phy. 56 2254
[8] Gu H, Pan B, Chen G and Duan L 2014 Nonlinear Dyn. 78 391
[9] FitzHugh R 1961 Bioph. J. 1 445
[10] Chavarette F R, Balthazar J M, Peruzzi N J and Rafikov M 2009 Commi. Nonl. Sci. Num. Simu. 14 892
[11] Cai J, Bao H, Xu Q, Hua Z and Bao B 2021 Nonlinear Dyn. 104 4379
[12] Hayati M, Nouri M, Abbott D and Haghiri S 2015 IEEE Tran. Cir. Sys. II: Expr. Bri. 63 463
[13] Cai J, Bao H, Chen M, Xu Q and Bao B 2022 IEEE Tran. Cir. Sys. I: Regu. Pap. 69 2916
[14] Arena P, Patané L and Spinosa A G 2019 Nonlinear Dyn. 97 1011
[15] Duarte J, Silva L and Ramos J S 2006 Nonlinear Dyn. 44 231
[16] Guo Y,Wang L, Dong Q and Lou X 2021 Math. Compu. Simu. 181 430
[17] Yao Y and Ma J 2018 Cogni. Neurody. 12 343
[18] Xu Q, Chen X, Chen B, Wu H, Li Z and Bao H 2023 Nonlinear Dyn. 111 8737
[19] Deng H, Gui R and Yao Y 2023 Chin. Phys. B 32 120501
[20] Guo Z H, Li Z J,WangMJ and MaML 2023 Chin. Phys. B 32 038701
[21] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier) pp. 69-212
[22] Podlubny I 1998 Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications (San Diego: Elsevier) pp. 41-117
[23] Oldham K and Spanier J 1974 The fractional calculus theory and applications of differentiation and integration to arbitrary order (New York: Elsevier) pp. 46-59
[24] Caputo M and Fabrizio M 2015 Prog. Frac. Diff. Appli. 1 73
[25] Atangana A and Baleanu D 2016 Ther. Sci. 20 763769
[26] Almeida R 2017 Commi. Nonl. Sci. Num. Simu. 44 460
[27] Sousa J V D C, Frederico G S and De Oliveira E C 2020 Compu. Appl. Math. 39 1
[28] Odibat Z and Baleanu D 2022 Chin. J. Phy. 77 1003
[29] Odibat Z and Baleanu D 2020 Appl. Nume. Math. 156 94
[30] Erturk V S and Kumar P 2020 Chaos Soliton. Fract. 139 110280
[31] Etemad S, Avci I, Kumar P, Baleanu D and Rezapour S 2022 Chaos Soliton. Fract. 162 112511
[32] Kumar P and Erturk V S 2021 Chaos Soliton. Fract. 144 110672
[33] Kumar P, Erturk V S, Banerjee R, Yavuz M and Govindaraj V 2021 Phys. Scr. 96 124044
[34] Kumar P, Erturk V S and Murillo-Arcila M 2021 Chaos Soliton. Fract. 150 111091
[35] Kumar P, Erturk V S, Tyagi S, Banas J and Manickam A 2023 Inter. Jour. Dyn. Cont. 11 2179
[36] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
[37] Daftardar-Gejji V, Sukale Y and Bhalekar S 2014 Appl. Mathe. Comp. 244 158
[38] Jhinga A and Daftardar-Gejji V 2019 Comp. Appl. Mathe. 38 166
[39] Su X and Zhou Y 2022 Frac. Fract. 6 516
[40] Odibat Z, Erturk V S, Kumar P and Govindaraj V 2021 Phys. Scr. 96 125213
[41] Sivalingam S M, Kumar P and Govindaraj V 2023 Math. Compu. Simu. 213 302
[42] Jhinga A and Daftardar-Gejji V 2018 Appl. Mathe. Comp. 336 418
[43] Sivalingam S M, Kumar P, Trinh H and Govindaraj V 2024 Math. Compu. Simu. 220 462
[44] Saçu·I E 2024 Jour. Compu. Elect. 23 188
[45] Jun D, Guang-Jun Z, Yong X, Hong Y and JueW2014 Cogn. Neuro. 8 167
[46] Kaslik E 2017 Frac. Calcu. Appl. Anal. 20 623
[47] Yu Y, Shi M, Kang H, Chen M and Bao B 2020 Nonlinear Dyn. 100 891
[48] Mondal A, Sharma S K, Upadhyay R K and Mondal A 2019 Sci. Rep. 9 15721
[49] TekaWW, Upadhyay R K and Mondal A 2018 Commi. Nonl. Sci. Num. Simu. 56 161
[50] Silva-Juárez A, Tlelo-Cuautle E, De La Fraga L G and Li R 2020 J. Adv. Res. 25 77
[51] Malik S A and Mir A H 2020 IEEE Tran. Emer. Top. Compu. Inte. 5 792
[52] Tolba M F, Elsafty A H, Armanyos M, Said L A, Madian A H and Radwan A G 2019 Micro. Jour. 89 56
[53] Khanday F A, Kant N A, Dar M R, Zulkifli T Z A and Psychalinos C 2018 IEEE Tran. Neur. Net. Lear. Sys. 30 2108
[54] Alidousti J and Ghaziani R K 2017 Math. Mode. Compu. Simu. 9 390
[55] Al-Qurashi M, Rashid S, Jarad F, Ali E and Egami R H 2023 Res. Phys. 48 106405
[56] Katugampola U N 2011 Appl. Math. Comp. 218 860
[57] Daftardar-Gejji V and Jafari H 2006 J. Math. Anal. Appl. 316 753
[1] Observation of Weibel magnetic fields in laser-produced interpenetrating flows
Chuanqi Shi(施川奇), Dawei Yuan(袁大伟), Wei Sun(孙伟), Yapeng Zhang(张雅芃), Zhijie Qiu(邱志杰), Huigang Wei(魏会冈), Zhe Zhang(张喆), Xiaohui Yuan(远晓辉), and Gang Zhao(赵刚). Chin. Phys. B, 2025, 34(1): 015203.
[2] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[3] Theoretical insights into the structures and fundamental properties of pnictogen nitrides
Jingjing Wang(王晶晶), Panlong Kong(孔攀龙), Dingmei Zhang(张定梅), Defang Gao(高德芳), Zaifu Jiang(蒋再富), and Wei Dai(戴伟). Chin. Phys. B, 2024, 33(9): 096201.
[4] Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures
Qiuchen Wang(王秋辰), Yuli Huang(黄昱力), Jing Xu(许晶), Xiqian Yu(禹习谦), Hong Li(李泓), and Liquan Chen(陈立泉). Chin. Phys. B, 2024, 33(8): 088201.
[5] Spectral characteristics of laser-plasma instabilities with a broadband laser
Guo-Xiao Xu(许国潇), Ning Kang(康宁), An-Le Lei(雷安乐), Hui-Ya Liu(刘会亚), Yao Zhao(赵耀), Shen-Lei Zhou(周申蕾), Hong-Hai An(安红海), Jun Xiong(熊俊), Rui-Rong Wang(王瑞荣), Zhi-Yong Xie(谢志勇), Xi-Chen Zhou(周熙晨), Zhi-Heng Fang(方智恒), and Wei Wang(王伟). Chin. Phys. B, 2024, 33(8): 085204.
[6] Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
Sihan Chen(陈思汗), Jun Li(黎俊), Keke Liu(刘可可), Xiaochen Sun(孙笑晨), Jingwei Wan(万京伟), Huiyu Zhai(翟慧宇), Xinfeng Tang(唐新峰), and Gangjian Tan(谭刚健). Chin. Phys. B, 2024, 33(8): 088203.
[7] Optimal parameter space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin films under strain and electric fields
Lvjin Wang(王侣锦), Cong Wang(王聪), Linwei Zhou(周霖蔚), Xieyu Zhou(周谐宇), Yuhao Pan(潘宇浩), Xing Wu(吴幸), and Wei Ji(季威). Chin. Phys. B, 2024, 33(7): 076803.
[8] Physics package based on intracavity laser cooling 87Rb atoms for space cold atom microwave clock
Siminda Deng(邓思敏达), Wei Ren(任伟), Jingfeng Xiang(项静峰), Jianbo Zhao(赵剑波), Lin Li(李琳), Di Zhang(张迪), Jinyin Wan(万金银), Yanling Meng(孟艳玲), Xiaojun Jiang(蒋小军), Tang Li(李唐), Liang Liu(刘亮), and Desheng Lü(吕德胜). Chin. Phys. B, 2024, 33(7): 070602.
[9] Performance enhancement of a viscoelastic bistable energy harvester using time-delayed feedback control
Mei-Ling Huang(黄美玲), Yong-Ge Yang(杨勇歌), and Yang Liu(刘洋). Chin. Phys. B, 2024, 33(6): 060203.
[10] Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system
Ling Xu(徐玲) and Lei Jiang(姜磊). Chin. Phys. B, 2024, 33(6): 060503.
[11] Stability and melting behavior of boron phosphide under high pressure
Wenjia Liang(梁文嘉), Xiaojun Xiang(向晓君), Qian Li(李倩), Hao Liang(梁浩), and Fang Peng(彭放). Chin. Phys. B, 2024, 33(4): 046201.
[12] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[13] Enhanced stability of FA-based perovskite: Rare-earth metal compound EuBr2 doping
Minna Hou(候敏娜), Xu Guo(郭旭), Meidouxue Han(韩梅斗雪), Juntao Zhao(赵均陶), Zhiyuan Wang(王志元), Yi Ding(丁毅), Guofu Hou(侯国付), Zongsheng Zhang(张宗胜), and Xiaoping Han(韩小平). Chin. Phys. B, 2024, 33(4): 047802.
[14] A proposal for detecting weak electromagnetic waves around 2.6 μm wavelength with Sr optical clock
Ruo-Shui Han(韩弱水), Wei Wang(王伟), and Tao Wang(汪涛). Chin. Phys. B, 2024, 33(4): 043201.
[15] Dual-wavelength pumped latticed Fermi-Pasta-Ulam recurrences in nonlinear Schrödinger equation
Qian Zhang(张倩), Xiankun Yao(姚献坤), and Heng Dong(董恒). Chin. Phys. B, 2024, 33(3): 030502.
No Suggested Reading articles found!