Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 030306    DOI: 10.1088/1674-1056/adab63
GENERAL Prev   Next  

Global receptive field transformer decoder method on quantum surface code data and syndrome error correction

Ao-Qing Li(李熬庆)1, Ce-Wen Tian(田策文)1, Xiao-Xuan Xu(徐晓璇)1, Hong-Yang Ma(马鸿洋)2, and Jun-Qing Liang(梁俊卿)1,†
1 School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China;
2 School of Sciences, Qingdao University of Technology, Qingdao 266033, China
Abstract  Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation. However, the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution. Therefore, quantum error correction technology is crucial to achieving reliable quantum computing. In this work, we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors. However, errors can occur not only in data qubits but also in syndrome qubits, and different types of errors may generate the same syndromes, complicating the decoding task and creating a need for more efficient decoding methods. To address this challenge, we used a transformer decoder based on an attention mechanism. By mapping the surface code lattice, the decoder performs a self-attention process on all input syndromes, thereby obtaining a global receptive field. The performance of the decoder was evaluated under a phenomenological error model. Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%. Additionally, we obtained decoding thresholds of 5% and 6.05% at maximum code distances of 7 and 9, respectively. These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes.
Keywords:  quantum error correction      surface code      transformer decoder  
Received:  19 October 2024      Revised:  25 December 2024      Accepted manuscript online:  17 January 2025
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.67.-a (Quantum information)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF049), Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001), and the Key R&D Program of Shandong Province, China (Grant No. 2023CXGC010901).
Corresponding Authors:  Jun-Qing Liang     E-mail:  junqingliang@qut.edu.cn

Cite this article: 

Ao-Qing Li(李熬庆), Ce-Wen Tian(田策文), Xiao-Xuan Xu(徐晓璇), Hong-Yang Ma(马鸿洋), and Jun-Qing Liang(梁俊卿) Global receptive field transformer decoder method on quantum surface code data and syndrome error correction 2025 Chin. Phys. B 34 030306

[1] Li J, Peng X, Du J and Suter D 2012 Sci. Rep. 2 260
[2] Gong L H, Li M L, Cao H and Wang B 2024 Laser Phys. Lett. 21 055209
[3] Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M and Zoller P 2022 Nature 607 667
[4] Qiao L F, Streltsov A, Gao J, Rana S, Ren R J, Jiao Z Q, Hu C Q, Xu X Y, Wang C Y, Tang H, Yang A L, Ma Z H, Lewenstein M and Jin X M 2018 Phys. Rev. A 98 052351
[5] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and Żukowski M 2012 Rev. Mod. Phys. 84 777
[6] Terhal B M 2015 Rev. Mod. Phys. 87 307
[7] Chiaverini J, Leibfried D, Schaetz T, Barrett M D, Blakestad R B, Britton J, ItanoWM, Jost J D, Knill E, Langer C, Ozeri R andWineland D J 2004 Nature 432 602
[8] Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098
[9] Andersen C K, Remm A, Lazar S, Krinner S, Lacroix N, Norris G J, Gabureac M, Eichler C and Wallraff A 2020 Nat. Phys. 16 875
[10] Stephens A M 2014 Phys. Rev. A 89 022321
[11] Zhao Y, Ye Y, Huang H L, et al. 2022 Phys. Rev. Lett. 129 030501
[12] Bravyi S, Englbrecht M, König R and Peard N 2018 npj Quantum Inf. 4 55
[13] Liu Y H and Poulin D 2019 Phys. Rev. Lett. 122 200501
[14] Yan D D, Fan X K, Chen Z Y and Ma H Y 2022 Chin. Phys. B 31 010304
[15] Meinerz K, Park C Y and Trebst S 2022 Phys. Rev. Lett. 128 080505
[16] Sundaresan N, Yoder T J, Kim Y, Li M Y, Chen E H, Harper G, Thorbeck T, Cross A W, Córcoles A D and Takita M 2023 Nat. Commun. 14 2852
[17] Sheth M, Jafarzadeh S Z and Gheorghiu V 2020 Phys. Rev. A 101 032338
[18] Bravyi S, Suchara M and Vargo A 2014 Phys. Rev. A 92 032326
[19] Hammar K, Orekhov A, Hybelius P W, Wisakanto A K, Srivastava B, Kockum A F and Granath M 2022 Phys. Rev. A 105 042616
[20] Fan X K, Yan D D, Liu F and Ma H Y 2022 Sci. Sin. Inform. 52 539
[21] Song Z Y, Wang Y N, Wang H W and Ma H Y 2023 Acta Electronica Sinica 51 2030
[22] Gicev S, Hollenberg L C L and Usman M 2023 Quantum 7 1058
[23] Baireuther P, Caio M D, Criger B, Beenakker C W J and O’Brien T E 2019 New J. Phys. 21 013003
[24] Varsamopoulos S, Bertels K and Almudever C G 2020 Quantum Mach. Intell. 2 1
[25] Bordoni S and Giagu S 2023 Quantum Inf. Process 22 151
[26] Krastanov S and Jiang L 2017 Sci. Rep. 7 11003
[27] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L and Polosukhin I 2017 arXiv:1706.03762v7[cs.CL]
[28] Cao H Y, Pan F, Wang Y J and Zhang P 2023 arXiv:2307.09025v1[quant-ph]
[29] Wang H R, Liu P Y, Shao K, Li D T, Gu J Q, Pan D Z, Ding Y S and Han S 2023 arXiv:2311.16082v1[quant-ph]
[30] Bausch J, Senior A W, Heras F J H, Edlich T, Davies A, Newman M, Jones C, Satzinger K, Niu M Y, Blackwell S, Holland G, Kafri D, Atalaya J, Gidney C, Hassabis D, Boixo S, Neven H and Kohli P 2024 Nature 635 834
[31] Fujisaki J, Oshima H, Sato S and Fujii K 2022 Phys. Rev. Res.h 4 043086
[32] Smith S C, Brown B J and Bartlett S D 2023 Phys. Rev. Appl. 19 034050
[33] Reichardt B W 2021 Quantum Sci. Technol. 6 015007
[34] Bhoumik D, Sen P, Majumdar R, Sur-Kolay S, Kumar K J L and Iyengar S S 2021 arXiv:2110.10896v1[quant-ph]
[35] Bonilla Ataides J P, Tuckett D K, Bartlett S D, Flammia S T and Brown B J 2021 Nat. Commun. 12 2172
[36] Versluis R, Poletto S, Khammassi N, Tarasinski B, Haider N, Michalak D J, Bruno A, Bertels K and DiCarlo L 2017 Phys. Rev. Appl. 8 034021
[37] Horsman D, Fowler A G, Devitt S and Meter R V 2012 New J. Phys. 14 123011
[38] Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Phys. Rev. A 86 032324
[39] Varbanov B M, Serra-Peralta M, Byfield D and Terhal B M 2023 arXiv:2307.03280v2[quant-ph]
[40] Kubica A and Delfosse N 2023 Quantum 7 929
[41] Vedral V and Plenio M B 1998 Progress in Quantum Electronics 22 1
[42] Nagy M and Akl S G 2006 International Journal of Parallel, Emergent and Distributed Systems 21 1
[43] Hu T J, Wu J D and Li Q 2024 IEEE Network 38 155
[44] Ercan H E, Ghosh J, Crow D, Premakumar V N, Joynt R, Friesen M and Coppersmith S N 2018 Phys. Rev. A 97 012318
[45] Xu M X, Dai W R, Liu C M, Gao X, Lin W Y, Qi G J and Xiong H K 2020 arXiv:2001.02908v2[eess.SP]
[46] Yun S, Jeong M, Yoo S, Lee S, Yi S S, Kim R, Kang J and Kim H J 2022 Neural Networks 153 104
[47] Fowler A G, Stephens A M and Groszkowski P 2009 Phys. Rev. A 80 052312
[48] Stephens A M 2014 Phys. Rev. A 89 022321
[49] Dür W and Briegel H J 2007 Rep. Prog. Phys. 70 1381
[50] Huo M X and Li Y 2017 New J. Phys. 19 123032
[51] Bravyi S and Haah J 2013 Phys. Rev. Lett. 111 200501
[1] Quantum decoder design for subsystem surface code based on multi-head graph attention and edge weighting
Nai-Hua Ji(纪乃华), Hui-Qian Sun(孙汇倩), Bo Xiao(肖博), Ping-Li Song(宋平俐), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2025, 34(2): 020309.
[2] Decoding topological XYZ2 codes with reinforcement learning based on attention mechanisms
Qing-Hui Chen(陈庆辉), Yu-Xin Ji(姬宇欣), Ke-Han Wang(王柯涵), Hong-Yang Ma(马鸿洋), and Nai-Hua Ji(纪乃华). Chin. Phys. B, 2024, 33(6): 060314.
[3] Recurrent neural network decoding of rotated surface codes based on distributed strategy
Fan Li(李帆), Ao-Qing Li(李熬庆), Qi-Di Gan(甘启迪), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040307.
[4] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[5] Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels
Ji-Hao Fan(樊继豪), Pei-Wen Xia(夏沛文), Di-Kang Dai(戴迪康), and Yi-Xiao Chen(陈一骁). Chin. Phys. B, 2023, 32(12): 120304.
[6] Approximate error correction scheme for three-dimensional surface codes based reinforcement learning
Ying-Jie Qu(曲英杰), Zhao Chen(陈钊), Wei-Jie Wang(王伟杰), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2023, 32(10): 100307.
[7] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[8] Determination of quantum toric error correction code threshold using convolutional neural network decoders
Hao-Wen Wang(王浩文), Yun-Jia Xue(薛韵佳), Yu-Lin Ma(马玉林), Nan Hua(华南), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010303.
[9] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[10] Encoding entanglement-assisted quantum stabilizer codes
Wang Yun-Jiang(王云江), Bai Bao-Ming(白宝明), Li Zhuo(李卓), Peng Jin-Ye(彭进业), and Xiao He-Ling(肖鹤玲) . Chin. Phys. B, 2012, 21(2): 020304.
[11] Jointly-check iterative decoding algorithm for quantum sparse graph codes
Shao Jun-Hu(邵军虎), Bai Bao-Ming(白宝明), Lin Wei(林伟), and Zhou Lin(周林). Chin. Phys. B, 2010, 19(8): 080307.
[12] Secure deterministic communication in a quantum loss channel using quantum error correction code
Wu Shuang(吴双), Liang Lin-Mei(梁林梅), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2007, 16(5): 1229-1232.
No Suggested Reading articles found!