SPECIAL TOPIC — Quantum communication and quantum network |
Prev
Next
|
|
|
Multi-protocol relay chaining for large-scale quantum key distribution networks |
Yuan Cao(曹原)1,†, Xiaosong Yu(郁小松)2, Yongli Zhao(赵永利)2, Chunhui Zhang(张春辉)1, Xingyu Zhou(周星宇)1, Jie Zhang(张杰)2, and Qin Wang(王琴)1 |
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract As the first stage of the quantum Internet, quantum key distribution (QKD) networks hold the promise of providing long-term security for diverse users. Most existing QKD networks have been constructed based on independent QKD protocols, and they commonly rely on the deployment of single-protocol trusted relay chains for long reach. Driven by the evolution of QKD protocols, large-scale QKD networking is expected to migrate from a single-protocol to a multi-protocol paradigm, during which some useful evolutionary elements for the later stages of the quantum Internet may be incorporated. In this work, we delve into a pivotal technique for large-scale QKD networking, namely, multi-protocol relay chaining. A multi-protocol relay chain is established by connecting a set of trusted/untrusted relays relying on multiple QKD protocols between a pair of QKD nodes. The structures of diverse multi-protocol relay chains are described, based on which the associated model is formulated and the policies are defined for the deployment of multi-protocol relay chains. Furthermore, we propose three multi-protocol relay chaining heuristics. Numerical simulations indicate that the designed heuristics can effectively reduce the number of trusted relays deployed and enhance the average security level versus the commonly used single-protocol trusted relay chaining methods on backbone network topologies.
|
Received: 27 September 2024
Revised: 06 November 2024
Accepted manuscript online: 08 November 2024
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
Fund: This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 62201276, 62350001, U22B2026, and 62471248), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0300701), the Key R&D Program (Industry Foresight and Key Core Technologies) of Jiangsu Province (Grant No. BE2022071), and Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 22KJB510007). |
Corresponding Authors:
Yuan Cao
E-mail: yuancao@njupt.edu.cn
|
Cite this article:
Yuan Cao(曹原), Xiaosong Yu(郁小松), Yongli Zhao(赵永利), Chunhui Zhang(张春辉), Xingyu Zhou(周星宇), Jie Zhang(张杰), and Qin Wang(王琴) Multi-protocol relay chaining for large-scale quantum key distribution networks 2025 Chin. Phys. B 34 010310
|
[1] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505 [2] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460 [3] Diamanti E, Lo H K, Qi B and Yuan Z 2016 npj Quantum Inf. 2 16025 [4] Xu F, Ma X, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002 [5] Diffie W and Hellman M 1976 IEEE Trans. Inf. Theory 22 644 [6] Cao Y, Zhao Y, Wang Q, Zhang J, Ng S X and Hanzo L 2022 IEEE Commun. Surv. Tutorials 24 839 [7] Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Y, Lu C Y, Jiang X, Ma X, Zhang Q, Chen T Y and Pan J W 2016 Phys. Rev. X 6 011024 [8] Huang D, Huang P, Li H, Wang T, Zhou Y and Zeng G 2016 Opt. Lett. 41 3511 [9] Aguado A, López V, López D, Peev M, Poppe A, Pastor A, Folgueira J and Martín V 2019 IEEE Commun. Mag. 57 20 [10] Tessinari R S, Bravalheri A, Hugues-Salas E, Collins R, Aktas D, Guimaraes R S, Alia O, Rarity J, Kanellos G T, Nejabati R and Simeonidou D 2019 45th European Conference on Optical Communication (ECOC 2019) [11] Dynes J F, Wonfor A, Tam W W S, Sharpe A W, Takahashi R, Lucamarini M, Plews A, Yuan Z L, Dixon A R, Cho J, Tanizawa Y, Elbers J P, Greiæer H, White I H, Penty R V and Shields A J 2019 npj Quantum Inf. 5 101 [12] Joshi S K, Aktas D,Wengerowsky S, Lončarić M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Z, Kling L, Qiu A, Razavi M, Stipčević M, Rarity J G and Ursin R 2020 Sci. Adv. 6 eaba0959 [13] Chen T Y, Jiang X, Tang S B, et al. 2021 npj Quantum Inf. 7 134 [14] Wang S, Chen W, Yin Z Q, et al. 2014 Opt. Express 22 21739 [15] Wonfor A, White C, Bahrami A, Pearse J, Duan G, Straw A, Edwards T, Spiller T, Penty R and Lord A 2019 45th European Conference on Optical Communication (ECOC 2019) [16] Zhang Q, Xu F, Li L, Liu N L and Pan JW2019 Quantum Sci. Technol. 4 040503 [17] Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214 [18] Li Z D, Zhang R, Yin X F, Liu L Z, Hu Y, Fang Y Q, Fei Y Y, Jiang X, Zhang J, Li L, Liu N L, Xu F, Chen Y A and Pan J W 2019 Nat. Photon. 13 644 [19] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F and Guo G C 2021 Nature 594 41 [20] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 [21] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400 [22] Ekert A K 1991 Phys. Rev. Lett. 67 661 [23] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557 [24] Wang S, Yin Z Q, He D Y, ChenW,Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C and Han Z F 2022 Nat. Photon. 16 154 [25] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q and Pan J W 2023 Phys. Rev. Lett. 130 210801 [26] Wehner S, Elkouss D and Hanson R 2018 Science 362 eaam9288 [27] Cao Y, Zhao Y,Wang J, Yu X, Ma Z and Zhang J 2019 J. Opt. Commun. Netw. 11 285 [28] Cao Y, Zhao Y, Li J, Lin R, Zhang J and Chen J 2021 IEEE J. Sel. Areas Commun. 39 2701 [29] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Process. p. 175 [30] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902 [31] Stucki D, Brunner N, Gisin N, Scarani V and Zbinden H 2005 Appl. Phys. Lett. 87 194108 [32] Pan D, Long G L, Yin L, Sheng Y B, Ruan D, Ng S X, Lu J and Hanzo L 2024 IEEE Commun. Surv. Tutorials 26 1898 [33] Pan D, Lin Z, Wu J, Zhang H, Sun Z, Ruan D, Yin L and Long G L 2020 Photon. Research 8 1522 [34] Fan-Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C and Han Z F 2021 Photon. Res. 9 1881 [35] Guccione G, Darras T, Jeannic H L, Verma V B, Nam S W, Cavailles A and Laurat J 2020 Sci. Adv. 6 eaba4508 [36] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q and Pan J W 2021 Nat. Photon. 8 570 [37] Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501 [38] Yin J, Li Y H, Liao S K, et al. 2020 Nature 582 501 [39] Zhao Y, Cao Y, Wang W, Wang H, Yu X, Zhang J, Tornatore M, Wu Y and Mukherjee B 2018 IEEE Commun. Mag. 56 130 [40] Cao Y, Zhao Y, Wang J, Yu X, Ma Z and Zhang J 2019 IEEE Commun. Mag. 57 152 [41] Wang R, Tessinari R S, Hugues-Salas E, Bravalheri A, Uniyal N, Muqaddas A S, Guimaraes R S, Diallo T, Moazzeni S, Wang Q, Kanellos G T, Nejabati R and Simeonidou D 2020 J. Lightwave Technol. 38 139 [42] Niu J, Sun Y, Jia X and Ji Y 2021 J. Lightwave Technol. 39 2661 [43] Moghaddam E E, Beyranvand H and Salehi J A 2021 IEEE J. Sel. Areas Commun. 39 2688 [44] 2019 Overview on Networks Supporting Quantum Key Distribution ITU-T Y.3800 [45] Wang W, Xu F and Lo H K 2019 Phys. Rev. X 9 041012 [46] Zhou X Y, Zhang C H, Zhang C M and Wang Q 2019 Phys. Rev. A 99 062316 [47] Wang X B 2013 Phys. Rev. A 87 012320 [48] Wang Q and Wang X B 2013 Phys. Rev. A 88 052332 [49] Shannon C E 1949 Bell Labs Tech. J. 28 656 [50] 2020 Quantum Key Distribution Networks - Key Management ITU-T Y.3803 [51] Aleksic S, Hipp F, Winkler D, Poppe A, Schrenk B and Franzl G 2015 Opt. Express 23 10359 [52] Mao Y, Wang B X, Zhao C, Wang G, Wang R, Wang H, Zhou F, Nie J, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y and Pan J W 2018 Opt. Express 26 6010 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|