Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 010310    DOI: 10.1088/1674-1056/ad9018
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Multi-protocol relay chaining for large-scale quantum key distribution networks

Yuan Cao(曹原)1,†, Xiaosong Yu(郁小松)2, Yongli Zhao(赵永利)2, Chunhui Zhang(张春辉)1, Xingyu Zhou(周星宇)1, Jie Zhang(张杰)2, and Qin Wang(王琴)1
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  As the first stage of the quantum Internet, quantum key distribution (QKD) networks hold the promise of providing long-term security for diverse users. Most existing QKD networks have been constructed based on independent QKD protocols, and they commonly rely on the deployment of single-protocol trusted relay chains for long reach. Driven by the evolution of QKD protocols, large-scale QKD networking is expected to migrate from a single-protocol to a multi-protocol paradigm, during which some useful evolutionary elements for the later stages of the quantum Internet may be incorporated. In this work, we delve into a pivotal technique for large-scale QKD networking, namely, multi-protocol relay chaining. A multi-protocol relay chain is established by connecting a set of trusted/untrusted relays relying on multiple QKD protocols between a pair of QKD nodes. The structures of diverse multi-protocol relay chains are described, based on which the associated model is formulated and the policies are defined for the deployment of multi-protocol relay chains. Furthermore, we propose three multi-protocol relay chaining heuristics. Numerical simulations indicate that the designed heuristics can effectively reduce the number of trusted relays deployed and enhance the average security level versus the commonly used single-protocol trusted relay chaining methods on backbone network topologies.
Keywords:  quantum communications      quantum networks      trusted relay      untrusted relay  
Received:  27 September 2024      Revised:  06 November 2024      Accepted manuscript online:  08 November 2024
PACS:  03.65.-w (Quantum mechanics)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
Fund: This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 62201276, 62350001, U22B2026, and 62471248), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0300701), the Key R&D Program (Industry Foresight and Key Core Technologies) of Jiangsu Province (Grant No. BE2022071), and Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 22KJB510007).
Corresponding Authors:  Yuan Cao     E-mail:  yuancao@njupt.edu.cn

Cite this article: 

Yuan Cao(曹原), Xiaosong Yu(郁小松), Yongli Zhao(赵永利), Chunhui Zhang(张春辉), Xingyu Zhou(周星宇), Jie Zhang(张杰), and Qin Wang(王琴) Multi-protocol relay chaining for large-scale quantum key distribution networks 2025 Chin. Phys. B 34 010310

[1] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[2] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460
[3] Diamanti E, Lo H K, Qi B and Yuan Z 2016 npj Quantum Inf. 2 16025
[4] Xu F, Ma X, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[5] Diffie W and Hellman M 1976 IEEE Trans. Inf. Theory 22 644
[6] Cao Y, Zhao Y, Wang Q, Zhang J, Ng S X and Hanzo L 2022 IEEE Commun. Surv. Tutorials 24 839
[7] Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Y, Lu C Y, Jiang X, Ma X, Zhang Q, Chen T Y and Pan J W 2016 Phys. Rev. X 6 011024
[8] Huang D, Huang P, Li H, Wang T, Zhou Y and Zeng G 2016 Opt. Lett. 41 3511
[9] Aguado A, López V, López D, Peev M, Poppe A, Pastor A, Folgueira J and Martín V 2019 IEEE Commun. Mag. 57 20
[10] Tessinari R S, Bravalheri A, Hugues-Salas E, Collins R, Aktas D, Guimaraes R S, Alia O, Rarity J, Kanellos G T, Nejabati R and Simeonidou D 2019 45th European Conference on Optical Communication (ECOC 2019)
[11] Dynes J F, Wonfor A, Tam W W S, Sharpe A W, Takahashi R, Lucamarini M, Plews A, Yuan Z L, Dixon A R, Cho J, Tanizawa Y, Elbers J P, Greiæer H, White I H, Penty R V and Shields A J 2019 npj Quantum Inf. 5 101
[12] Joshi S K, Aktas D,Wengerowsky S, Lončarić M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Z, Kling L, Qiu A, Razavi M, Stipčević M, Rarity J G and Ursin R 2020 Sci. Adv. 6 eaba0959
[13] Chen T Y, Jiang X, Tang S B, et al. 2021 npj Quantum Inf. 7 134
[14] Wang S, Chen W, Yin Z Q, et al. 2014 Opt. Express 22 21739
[15] Wonfor A, White C, Bahrami A, Pearse J, Duan G, Straw A, Edwards T, Spiller T, Penty R and Lord A 2019 45th European Conference on Optical Communication (ECOC 2019)
[16] Zhang Q, Xu F, Li L, Liu N L and Pan JW2019 Quantum Sci. Technol. 4 040503
[17] Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214
[18] Li Z D, Zhang R, Yin X F, Liu L Z, Hu Y, Fang Y Q, Fei Y Y, Jiang X, Zhang J, Li L, Liu N L, Xu F, Chen Y A and Pan J W 2019 Nat. Photon. 13 644
[19] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F and Guo G C 2021 Nature 594 41
[20] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[21] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[22] Ekert A K 1991 Phys. Rev. Lett. 67 661
[23] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[24] Wang S, Yin Z Q, He D Y, ChenW,Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C and Han Z F 2022 Nat. Photon. 16 154
[25] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q and Pan J W 2023 Phys. Rev. Lett. 130 210801
[26] Wehner S, Elkouss D and Hanson R 2018 Science 362 eaam9288
[27] Cao Y, Zhao Y,Wang J, Yu X, Ma Z and Zhang J 2019 J. Opt. Commun. Netw. 11 285
[28] Cao Y, Zhao Y, Li J, Lin R, Zhang J and Chen J 2021 IEEE J. Sel. Areas Commun. 39 2701
[29] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Process. p. 175
[30] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[31] Stucki D, Brunner N, Gisin N, Scarani V and Zbinden H 2005 Appl. Phys. Lett. 87 194108
[32] Pan D, Long G L, Yin L, Sheng Y B, Ruan D, Ng S X, Lu J and Hanzo L 2024 IEEE Commun. Surv. Tutorials 26 1898
[33] Pan D, Lin Z, Wu J, Zhang H, Sun Z, Ruan D, Yin L and Long G L 2020 Photon. Research 8 1522
[34] Fan-Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C and Han Z F 2021 Photon. Res. 9 1881
[35] Guccione G, Darras T, Jeannic H L, Verma V B, Nam S W, Cavailles A and Laurat J 2020 Sci. Adv. 6 eaba4508
[36] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q and Pan J W 2021 Nat. Photon. 8 570
[37] Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501
[38] Yin J, Li Y H, Liao S K, et al. 2020 Nature 582 501
[39] Zhao Y, Cao Y, Wang W, Wang H, Yu X, Zhang J, Tornatore M, Wu Y and Mukherjee B 2018 IEEE Commun. Mag. 56 130
[40] Cao Y, Zhao Y, Wang J, Yu X, Ma Z and Zhang J 2019 IEEE Commun. Mag. 57 152
[41] Wang R, Tessinari R S, Hugues-Salas E, Bravalheri A, Uniyal N, Muqaddas A S, Guimaraes R S, Diallo T, Moazzeni S, Wang Q, Kanellos G T, Nejabati R and Simeonidou D 2020 J. Lightwave Technol. 38 139
[42] Niu J, Sun Y, Jia X and Ji Y 2021 J. Lightwave Technol. 39 2661
[43] Moghaddam E E, Beyranvand H and Salehi J A 2021 IEEE J. Sel. Areas Commun. 39 2688
[44] 2019 Overview on Networks Supporting Quantum Key Distribution ITU-T Y.3800
[45] Wang W, Xu F and Lo H K 2019 Phys. Rev. X 9 041012
[46] Zhou X Y, Zhang C H, Zhang C M and Wang Q 2019 Phys. Rev. A 99 062316
[47] Wang X B 2013 Phys. Rev. A 87 012320
[48] Wang Q and Wang X B 2013 Phys. Rev. A 88 052332
[49] Shannon C E 1949 Bell Labs Tech. J. 28 656
[50] 2020 Quantum Key Distribution Networks - Key Management ITU-T Y.3803
[51] Aleksic S, Hipp F, Winkler D, Poppe A, Schrenk B and Franzl G 2015 Opt. Express 23 10359
[52] Mao Y, Wang B X, Zhao C, Wang G, Wang R, Wang H, Zhou F, Nie J, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y and Pan J W 2018 Opt. Express 26 6010
[1] Topological states constructed by two different trivial quantum wires
Jing-Run Lin(林景润), Linxi Lv(吕林喜), and Zheng-Wei Zuo(左正伟)†. Chin. Phys. B, 2025, 34(1): 010306.
[2] A nanosecond level current pulse capture taper optical fiber probe based on micron level nitrogen-vacancy color center diamond
Yuchen Bian(卞雨辰), Yangfan Mao(毛扬帆), Honghao Chen(陈鸿浩), Shiyu Ge(葛仕宇), Wentao Lu(卢文韬), Chengkun Wang(王成坤), Sihan An(安思瀚), and Guanxiang Du(杜关祥). Chin. Phys. B, 2024, 33(12): 120301.
[3] Entropy variances of pure coherent states in the diffusion channel
Wei-Feng Wu(吴卫锋), Yong Fang(方勇), and Peng Fu(付鹏). Chin. Phys. B, 2024, 33(9): 094202.
[4] Topological phases and edge modes of an uneven ladder
Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Chin. Phys. B, 2024, 33(8): 080202.
[5] Verifying hierarchical network nonlocality in general quantum networks
Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎). Chin. Phys. B, 2024, 33(7): 070304.
[6] Quantum dynamics within curved thin layers with deviation
Run Cheng(程润), Hao Zhao(赵浩), Cui-Bai Luo(罗翠柏), Xuan Zhou(周璇), Bi-Li Wang(王必利), Yan-Biao Li(李延标), and Jun Wang(王骏). Chin. Phys. B, 2024, 33(7): 076801.
[7] Exceptional points and quantum dynamics in a non-Hermitian two-qubit system
Yi-Xi Zhang(张益玺), Zhen-Tao Zhang(张振涛), Zhen-Shan Yang(杨震山), Xiao-Zhi Wei(魏晓志), and Bao-Long Liang(梁宝龙). Chin. Phys. B, 2024, 33(6): 060308.
[8] Wigner function of optical cumulant operator and its dissipation in thermo-entangled state representation
Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2024, 33(6): 060307.
[9] Mobility edges and localization characteristics in one-dimensional quasiperiodic quantum walk
Xin-Hui Cui(崔鑫辉), Hui-Min Wang(王慧敏), and Zhi-Jian Li(李志坚). Chin. Phys. B, 2024, 33(6): 060301.
[10] Quantum correlations and entanglement in coupled optomechanical resonators with photon hopping via Gaussian interferometric power analysis
Y. Lahlou, B. Maroufi, and M. Daoud. Chin. Phys. B, 2024, 33(5): 050303.
[11] Harmonic balance simulation of the influence of component uniformity and reliability on the performance of a Josephson traveling wave parametric amplifier
Yuzhen Zheng(郑煜臻), Kanglin Xiong(熊康林), Jiagui Feng(冯加贵), and Hui Yang(杨辉). Chin. Phys. B, 2024, 33(4): 040401.
[12] Quantum control based on three forms of Lyapunov functions
Guo-Hui Yu(俞国慧) and Hong-Li Yang(杨洪礼). Chin. Phys. B, 2024, 33(4): 040201.
[13] Non-Gaussian quantum states generated via quantum catalysis and their statistical properties
Xiao-Yan Zhang(张晓燕), Chun-Yan Yang(杨春燕), Ji-Suo Wang(王继锁), and Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2024, 33(4): 040308.
[14] Preparing highly entangled states of nanodiamond rotation and NV center spin
Wen-Liang Li(李文亮) and Duan-Lu Zhou(周端陆). Chin. Phys. B, 2024, 33(2): 020305.
[15] Chiral bound states in a staggered array of coupled resonators
Wu-Lin Jin(金伍林), Jing Li(李静), Jing Lu(卢竞), Zhi-Rui Gong(龚志瑞), and Lan Zhou(周兰). Chin. Phys. B, 2024, 33(2): 020302.
No Suggested Reading articles found!