|
Special Issue:
Featured Column — INSTRUMENTATION AND MEASUREMENT
|
| INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
A low-noise and high-stability DC source for superconducting quantum circuits |
| Daxiong Sun(孙大雄)1,2,3,†, Jiawei Zhang(张家蔚)1,2,3,†,‡, Peisheng Huang(黄培生)1,2,3, Yubin Zhang(张玉斌)2, Zechen Guo(郭泽臣)1,2,3, Tingjin Chen(陈庭槿)1,2,3, Rui Wang(王睿)2,3,4, Xuandong Sun(孙炫东)2,3,4, Jiajian Zhang(张家健)2, Wenhui Huang(黄文辉)1,2,3, Jiawei Qiu(邱嘉威)2, Ji Chu(储继)2, Ziyu Tao(陶子予)2, Weijie Guo(郭伟杰)2, Xiayu Linpeng(林彭夏雨)2, Ji Jiang(蒋骥)1,2,3, Jingjing Niu(牛晶晶)2,5, Youpeng Zhong(钟有鹏)1,2,3,5,§, and Dapeng Yu(俞大鹏)1,2,3,5 |
1 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518048, China; 2 International Quantum Academy, Shenzhen 518048, China; 3 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518048, China; 4 Department of Physics, Southern University of Science and Technology, Shenzhen 518048, China; 5 Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China |
|
|
|
|
Abstract With the rapid scaling of superconducting quantum processors, electronic control systems relying on commercial off-the-shelf instruments face critical bottlenecks in signal density, power consumption, and crosstalk mitigation. Here we present a custom dual-channel direct current (DC) source module (QPower) dedicated to large-scale superconducting quantum processors. The module delivers a voltage range of $\pm7$ V with 200 mA maximum current per channel, while achieving the following key performance benchmarks: noise spectral density of 20 nV/$\sqrt{\mathrm{Hz}}$ at 10 kHz, output ripple $<$500 μV$_{\mathrm{pp}}$ within 20 MHz bandwidth, and long-term voltage drift $<$5 μV$_{\mathrm{pp}}$ over 12 hours. Integrated into the control electronics of a 66-qubit quantum processor, QPower enables qubit coherence time of $T_1$ = 87.6 μs and Ramsey dephasing time of $T_2$ = 5.1 μs, with qubit resonance frequency drift constrained to $\pm40$ kHz during 12-hour operation. This modular design is compact in size and efficient in energy consumption, providing a scalable DC source solution for intermediate-scale quantum processors with stringent noise and stability requirements, with potential extensions to other quantum hardware platforms and precision measurement systems.
|
Received: 01 May 2025
Revised: 01 June 2025
Accepted manuscript online: 06 June 2025
|
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
| Fund: Project supported by the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. KQTD20210811090049034) and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301703). |
Corresponding Authors:
Jiawei Zhang, Youpeng Zhong
E-mail: zhangjw2022@mail.sustech.edu.cn;zhongyp@sustech.edu.cn
|
Cite this article:
Daxiong Sun(孙大雄), Jiawei Zhang(张家蔚), Peisheng Huang(黄培生), Yubin Zhang(张玉斌), Zechen Guo(郭泽臣), Tingjin Chen(陈庭槿), Rui Wang(王睿), Xuandong Sun(孙炫东), Jiajian Zhang(张家健), Wenhui Huang(黄文辉), Jiawei Qiu(邱嘉威), Ji Chu(储继), Ziyu Tao(陶子予), Weijie Guo(郭伟杰), Xiayu Linpeng(林彭夏雨), Ji Jiang(蒋骥), Jingjing Niu(牛晶晶), Youpeng Zhong(钟有鹏), and Dapeng Yu(俞大鹏) A low-noise and high-stability DC source for superconducting quantum circuits 2025 Chin. Phys. B 34 090303
|
[1] Castelvecchi D 2023 Nature 624 238 [2] Xu S, Sun Z, Wang K, Xiang L, Bao Z, Zhu Z, Shen F, Song Z, Zhang P, et al. 2023 Chin. Phys. Lett. 40 060301 [3] Acharya R, Abanin D, Aghababaie-Beni L, et al. 2025 Nature 638 920 [4] Wang Z, Ma Z, Yu X, Zheng W, Zhou K, Zhang Y, Zhang Y, Lan D, Zhao J, et al. 2023 Chin. Phys. B 32 100304 [5] Gao D, Fan D, Zha C, Bei J, Cai G, Cai J, Cao S, Chen F, Chen J, et al. 2025 Phys. Rev. Lett. 134 090601 [6] Chen L, Lee K, Liu C, Marinelli B, Naik R, Kang Z, Goss N, Kim H, Santiago D, et al. 2025 arXiv:2503.04702 [7] Ball P 2021 Nature 599 542 [8] Choi C 2023 IEEE Spectrum 60 46 [9] Liang F, Miao P, Lin J, Xu Y, Guo C, Sun L, Liao S, Jin G and Peng C 2018 arXiv:1806.02645 [10] Zhang J, Sun X, Guo Z, Yuan Y, Zhang Y, Chu J, Huang W, Liang Y, Qiu J, et al. 2024 Chin. Phys. B 33 120309 [11] Zhu L, Zhu X, Yue Z, Tu T and Li C 2025 Chin. Phys. B 34 030302 [12] Li Z, Yu H, Tan X, Zhao S and Yu Y 2019 Chin. Phys. B 28 098505 [13] Oshio T, Nishimoto R, Higuchi T, Hayasaka K, Koike K, Morisaka S, Miyoshi T, Ohira R and Tanaka U 2025 J. Appl. Phys. 137 144401 [14] Ohira R, Morisaka S, Nakamura I, Noguchi A and Miyoshi T 2025 arXiv:2504.01815 [15] Kalfus W, Lee D, Ribeill G, Fallek S, Wagner A, Donovan B, Ristè D and Ohki T 2020 IEEE Transactions on Quantum Engineering 1 1 [16] Rietsche R, Dremel C, Bosch S, Steinacker L, Meckel M and Leimeister J 2022 Electronic Markets 32 2525 [17] Niu Z, Gao W, He X, Wang Y, Wang Z and Lin Z 2024 Appl. Phys. Lett. 124 254002 [18] Ryan C, Johnson B, Ristè D, Donovan B and Ohki T 2017 Rev. Sci. Instrum. 88 104703 [19] Córcoles A, Kandala A, Javadi-Abhari A, McClure D, Cross A, Temme K, Nation P, Steffen M and Gambetta J 2019 Proc. IEEE 108 1338 [20] Wang Z, Yu H, Liu R, et al. 2021 Chin. Phys. B 30 110305 [21] Krantz P, Kjaergaard M, Yan F, Orlando T, Gustavsson S and Oliver W 2019 Appl. Phys. Rev. 6 021318 [22] Yang Y, Shen Z, Zhu X, et al. 2022 Rev. Sci. Instrum. 93 074701 [23] Guo L, Duan P, Du L, et al. 2024 Chin. Phys. B 33 090303 [24] Ding C, Di Federico M, Hatridge M, Houck A, Leger S, Martinez J, Miao C, Schuster D, Stefanazzi L, et al. 2024 Phys. Rev. Res. 6 013305 [25] Stefanazzi L, Treptow K, Wilcer N, Stoughton C, Bradford C, Uemura S, Zorzetti S, Montella S, Cancelo G, et al. 2022 Rev. Sci. Instrum. 93 044709 [26] Xu Y, Huang G, Fruitwala N, Rajagopala A, Naik R, Nowrouzi K, Santiago D and Siddiqi I 2023 arXiv:2309.10333 [27] Xu Y, Huang G, Balewski J, Naik R, Morvan A, Mitchell B, Nowrouzi K, Santiago D and Siddiqi I 2021 IEEE Transactions on Quantum Engineering 2 1 [28] Guo C, Liang F, Lin J, et al. 2019 IEEE Transactions on Nuclear Science 66 1222 [29] Lin J, Liang F, Xu Y, Sun L, Guo C, Liao S and Peng C 2019 AIP Advances 9 115309 [30] Sun L, Liang F, Lin J, Guo C, Xu Y, Liao S and Peng C 2020 IEEE Transactions on Nuclear Science 67 2148 [31] Song Y, Beltrán L, Besedin I, Kerschbaum M, Pechal M, Swiadek F, Hellings C, Zanuz D, Flasby A, et al. 2024 arXiv:2409.06989 [32] Li T, Zhang J, Chen B, Huang K, Liu H, Xiao Y, Deng C, Liang G, Chen C, et al. 2025 Phys. Rev. Appl. 23 024059 [33] Lisenfeld J, Bilmes A and Ustinov A 2023 npj Quantum Information 9 8 [34] Grytsenko I, van Haagen S, Rybalko O, Jennings A, Mohan R, Tian Y and Kawakami E 2025 J. Low Temp. Phys. 219 282 [35] Terai H, Kameda Y, Yorozu S, Fujimaki A and Wang Z 2003 IEEE Transactions on Applied Superconductivity 13 502 [36] Macklin C, O’brien K, Hover D, Schwartz M, Bolkhovsky V, Zhang X, Oliver W and Siddiqi I 2015 Science 350 307 [37] Guo Z, Sun D, Huang P, Sun X, Yuan Y, Zhang J, Huang W, Liang Y, Qiu J, et al. 2025 Chip 100146 [38] Quinton F, Myhr P, BaraniM, Crespo del Granado P and Zhang H 2025 Scientific Reports 15 12733 [39] Ladd T, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J 2010 Nature 464 45 [40] Analog Devices 2015 LTZ1000 Datasheet and Product Info | Analog Devices [41] Huang W, Zhou X, Zhang L, Zhang J, Zhou Y, Guo Z, Yao B, Huang P, Li Q, et al. 2025 arXiv:2502.19185 [42] Wang W and Zhang X 2023 International Conference on Electronic Engineering and Informatics 584 [43] Egan M 2010 Analog Dialogue 44 1 [44] De Cos J, Suárez A, Garcı J, et al. 2015 IEEE Transactions on Microwave Theory and Techniques 63 4284 [45] Jenkins A 2013 Phys. Rep. 525 167 [46] Pandiev I 2023 International Journal of Circuit Theory and Applications 51 880 [47] Safonov M and Athans M 2003 IEEE Transactions on Automatic Control 22 173 [48] Morroni J, Zane R and Maksimovic D 2009 IEEE Transactions on Power Electronics 24 559 [49] Liang K, Zhu M, Qin X, Meng Z, Wang P and Du J 2024 Rev. Sci. Instrum. 95 024701 [50] He Y, Gorman S, Keith D, et al. 2019 Nature 571 371 [51] Xue X, Russ M, Nodar U, et al. 2022 Nature 601 343 [52] Xue X, Patra B, Jeroen S, et al. 2021 Nature 593 205 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|