|
|
Suppression of the vapor cell temperature error in a spin-exchange relaxation-free comagnetometer |
Jia-Li Liu(刘佳丽)1, Li-Wei Jiang(姜丽伟)2,3,†, Chi Fang(方驰)2,3, Xin Zhao(赵鑫)1, and Yuan-Qiang Chen(陈远强)1 |
1 National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China; 2 Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing 100191, China; 3 Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China |
|
|
Abstract The fluctuation of the vapor cell temperature leads to the variations of the density of the alkali metal atoms, which seriously damages the long-term stability of the spin-exchange relaxation-free (SERF) comagnetometer. To address this problem, we propose a novel method for suppressing the cell temperature error by manipulating the probe laser frequency. A temperature coefficient model of the SERF comagnetometer is established based on the steady-state response, which indicates that the comagnetometer can be tuned to a working point where the output signal is insensitive to the cell temperature fluctuation, and the working point is determined by the relaxation rate of the alkali metal atoms. The method is verified in a K-Rb-21Ne comagnetometer, and the experimental results are consistent with the theory. The theory and method presented here lay a foundation for the practical applications of the SERF comagnetometer.
|
Received: 01 August 2024
Revised: 12 September 2024
Accepted manuscript online: 09 October 2024
|
PACS:
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
07.55.Ge
|
(Magnetometers for magnetic field measurements)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62103024 and 61925301), and in part by the Aeronautical Science Foundation (Grant No. 2023Z073051012). |
Corresponding Authors:
Li-Wei Jiang
E-mail: jiangliwei@buaa.edu.cn
|
Cite this article:
Jia-Li Liu(刘佳丽), Li-Wei Jiang(姜丽伟), Chi Fang(方驰), Xin Zhao(赵鑫), and Yuan-Qiang Chen(陈远强) Suppression of the vapor cell temperature error in a spin-exchange relaxation-free comagnetometer 2024 Chin. Phys. B 33 120701
|
[1] Schreiber K U and Wells J P R 2013 Rev. Sci. Instrum. 84 041101 [2] Belfi J, Beverini N, Bosi F, Carelli G, Cuccato D, De Luca G, Di Virgilio A, Gebauer A, Maccioni E, Ortolan A, Porzio A, Saccorotti G, Simonelli A and Terreni G 2017 Rev. Sci. Instrum. 88 034502 [3] Flambaum V V and Romalis M V 2017 Phys. Rev. Lett. 118 142501 [4] Lee J, Almasi A and Romalis M V 2018 Phys. Rev. Lett. 120 161801 [5] Jiang L W, Liu J L, Liang Y X, Tian M N and Quan W 2022 Appl. Phys. Lett. 120 074101 [6] Xing L, Zhai Y, Fu Y, Song T, Liu F, Cai Q and Quan W 2020 Meas. Sci. Technol. 32 025112 [7] Pei H Y, FanWF, Du P C, Zhang K, Yuan L L and QuanW2023 IEEE Trans. Instrum. Meas. 72 1 [8] Kornack T W, Ghosh R K and Romalis M V 2005 Phys. Rev. Lett. 95 230801 [9] Smicikla M, Brown J M, Cheuk L W, Smullin S J and Romalis M V 2011 Phys. Rev. Lett. 107 171604 [10] Jiang L W, Quan W, Liu F, Fan W F, Xing L, Duan L H, Liu W M and Fang J C 2019 Phys. Rev. Appl. 12 024017 [11] Huang J, Wang Z, Fan W F, Xing L, Zhang W J, Duan L H and Quan W 2020 Opt. Express 28 35748 [12] Xu Z T, Wei K, Liu C, Heng X, Huang X F, Gong D, Wang F, Zhai Y Y and Quan W 2024 IEEE Trans. Instrum. Meas. 73 1 [13] Chen Y, Quan W, Zou S, Lu Y, Duan L H, Li Y, Zhang H, Ding M and Fang J C 2016 Sci. Rep. 6 36547 [14] Fang W F, Quan W, Liu F, Duan L H and Liu G 2019 Chin. Phys. B 28 110701 [15] Happer W and Tang H 1973 Phys. Rev. Lett. 31 273 [16] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801 [17] Alcock C B, Itkin V P and HorriganMK 1984 Canadian Metallurgical Quarterly 23 309 [18] Ito S, Ito Y and Kbayashi T 2019 Opt. Express 27 8037 [19] Fang J C, Wang T, Zhang H, Li Y and Zou S 2014 Rev. Sci. Instrum. 85 123104 [20] Liu F, Duan L H, Fan W F, Pang H Y, Liu S X and Quan W 2022 IEEE Sens. J. 22 1990 [21] Wu J, Liu Feng, Fan W F, Du P and Quan W 2022 Meas. Sci. Technol. 34 15113 [22] Liu F, Wu J and Quan W 2022 Rev. Sci. Instrum. 93 015102 [23] Ruan J S, Duan L H, Fu Y, FanWF and QuanW2023 Opt. Express 31 8342 [24] Lu J X, Qian Z Fang J C and QuanW2015 Rev. Sci. Instrum. 86 083103 [25] Liu J L, Duan L H, Jiang LW, Liang Y X, Tian M N and QuanW2023 IEEE Trans. Instrum. Meas. 72 1 [26] Jiang L W, Quan W, Liang Y X, Liu J L, Duan L H and Fang J C 2019 Opt. Express 27 27420 [27] Liu J L, Jiang L W, Liang Y X, Liu F and Quan W 2020 IEEE Trans. Instrum. Meas. 69 7805 [28] Jiang L W, Quan W, Li R J, Duan L H, Fan W F, Wang Z, Liu F, Xing L and Fang J C 2017 Phys. Rev. A 95 062103 [29] Chen Y, QuanW, Duan L H, Lu Y, Jiang LWand Fang J C 2016 Phys. Rev. A 94 052705 [30] Liu J L, Jiang L W, Liang Y X, Li G H, Cai Z, Wu Z H and Quan W 2022 Phys. Rev. Appl. 17 014030 [31] Budker D, Gawlik W, Kimball D F, Rochester S M, Yashchuk V V and Weis A 2002 Rev. Mod. Phys 74 1153 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|