Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120701    DOI: 10.1088/1674-1056/ad84ce
GENERAL Prev   Next  

Suppression of the vapor cell temperature error in a spin-exchange relaxation-free comagnetometer

Jia-Li Liu(刘佳丽)1, Li-Wei Jiang(姜丽伟)2,3,†, Chi Fang(方驰)2,3, Xin Zhao(赵鑫)1, and Yuan-Qiang Chen(陈远强)1
1 National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310051, China;
2 Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing 100191, China;
3 Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
Abstract  The fluctuation of the vapor cell temperature leads to the variations of the density of the alkali metal atoms, which seriously damages the long-term stability of the spin-exchange relaxation-free (SERF) comagnetometer. To address this problem, we propose a novel method for suppressing the cell temperature error by manipulating the probe laser frequency. A temperature coefficient model of the SERF comagnetometer is established based on the steady-state response, which indicates that the comagnetometer can be tuned to a working point where the output signal is insensitive to the cell temperature fluctuation, and the working point is determined by the relaxation rate of the alkali metal atoms. The method is verified in a K-Rb-21Ne comagnetometer, and the experimental results are consistent with the theory. The theory and method presented here lay a foundation for the practical applications of the SERF comagnetometer.
Keywords:  spin-exchange relaxation-free      atomic comagnetometer      cell temperature error      probe laser frequency  
Received:  01 August 2024      Revised:  12 September 2024      Accepted manuscript online:  09 October 2024
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62103024 and 61925301), and in part by the Aeronautical Science Foundation (Grant No. 2023Z073051012).
Corresponding Authors:  Li-Wei Jiang     E-mail:  jiangliwei@buaa.edu.cn

Cite this article: 

Jia-Li Liu(刘佳丽), Li-Wei Jiang(姜丽伟), Chi Fang(方驰), Xin Zhao(赵鑫), and Yuan-Qiang Chen(陈远强) Suppression of the vapor cell temperature error in a spin-exchange relaxation-free comagnetometer 2024 Chin. Phys. B 33 120701

[1] Schreiber K U and Wells J P R 2013 Rev. Sci. Instrum. 84 041101
[2] Belfi J, Beverini N, Bosi F, Carelli G, Cuccato D, De Luca G, Di Virgilio A, Gebauer A, Maccioni E, Ortolan A, Porzio A, Saccorotti G, Simonelli A and Terreni G 2017 Rev. Sci. Instrum. 88 034502
[3] Flambaum V V and Romalis M V 2017 Phys. Rev. Lett. 118 142501
[4] Lee J, Almasi A and Romalis M V 2018 Phys. Rev. Lett. 120 161801
[5] Jiang L W, Liu J L, Liang Y X, Tian M N and Quan W 2022 Appl. Phys. Lett. 120 074101
[6] Xing L, Zhai Y, Fu Y, Song T, Liu F, Cai Q and Quan W 2020 Meas. Sci. Technol. 32 025112
[7] Pei H Y, FanWF, Du P C, Zhang K, Yuan L L and QuanW2023 IEEE Trans. Instrum. Meas. 72 1
[8] Kornack T W, Ghosh R K and Romalis M V 2005 Phys. Rev. Lett. 95 230801
[9] Smicikla M, Brown J M, Cheuk L W, Smullin S J and Romalis M V 2011 Phys. Rev. Lett. 107 171604
[10] Jiang L W, Quan W, Liu F, Fan W F, Xing L, Duan L H, Liu W M and Fang J C 2019 Phys. Rev. Appl. 12 024017
[11] Huang J, Wang Z, Fan W F, Xing L, Zhang W J, Duan L H and Quan W 2020 Opt. Express 28 35748
[12] Xu Z T, Wei K, Liu C, Heng X, Huang X F, Gong D, Wang F, Zhai Y Y and Quan W 2024 IEEE Trans. Instrum. Meas. 73 1
[13] Chen Y, Quan W, Zou S, Lu Y, Duan L H, Li Y, Zhang H, Ding M and Fang J C 2016 Sci. Rep. 6 36547
[14] Fang W F, Quan W, Liu F, Duan L H and Liu G 2019 Chin. Phys. B 28 110701
[15] Happer W and Tang H 1973 Phys. Rev. Lett. 31 273
[16] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[17] Alcock C B, Itkin V P and HorriganMK 1984 Canadian Metallurgical Quarterly 23 309
[18] Ito S, Ito Y and Kbayashi T 2019 Opt. Express 27 8037
[19] Fang J C, Wang T, Zhang H, Li Y and Zou S 2014 Rev. Sci. Instrum. 85 123104
[20] Liu F, Duan L H, Fan W F, Pang H Y, Liu S X and Quan W 2022 IEEE Sens. J. 22 1990
[21] Wu J, Liu Feng, Fan W F, Du P and Quan W 2022 Meas. Sci. Technol. 34 15113
[22] Liu F, Wu J and Quan W 2022 Rev. Sci. Instrum. 93 015102
[23] Ruan J S, Duan L H, Fu Y, FanWF and QuanW2023 Opt. Express 31 8342
[24] Lu J X, Qian Z Fang J C and QuanW2015 Rev. Sci. Instrum. 86 083103
[25] Liu J L, Duan L H, Jiang LW, Liang Y X, Tian M N and QuanW2023 IEEE Trans. Instrum. Meas. 72 1
[26] Jiang L W, Quan W, Liang Y X, Liu J L, Duan L H and Fang J C 2019 Opt. Express 27 27420
[27] Liu J L, Jiang L W, Liang Y X, Liu F and Quan W 2020 IEEE Trans. Instrum. Meas. 69 7805
[28] Jiang L W, Quan W, Li R J, Duan L H, Fan W F, Wang Z, Liu F, Xing L and Fang J C 2017 Phys. Rev. A 95 062103
[29] Chen Y, QuanW, Duan L H, Lu Y, Jiang LWand Fang J C 2016 Phys. Rev. A 94 052705
[30] Liu J L, Jiang L W, Liang Y X, Li G H, Cai Z, Wu Z H and Quan W 2022 Phys. Rev. Appl. 17 014030
[31] Budker D, Gawlik W, Kimball D F, Rochester S M, Yashchuk V V and Weis A 2002 Rev. Mod. Phys 74 1153
[1] Performance optimization of a SERF atomic magnetometer based on flat-top light beam
Ziqi Yuan(袁子琪), Junjian Tang(唐钧剑), Shudong Lin(林树东), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2024, 33(6): 060703.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[4] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[5] Low drift nuclear spin gyroscope with probe light intensity error suppression
Wenfeng Fan(范文峰), Wei Quan(全伟), Feng Liu(刘峰), Lihong Duan(段利红), Gang Liu(刘刚). Chin. Phys. B, 2019, 28(11): 110701.
[6] In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
Fang Jian-Cheng (房建成), Wang Tao (王涛), Zhang Hong (张红), Li Yang (李阳), Cai Hong-Wei (蔡洪炜). Chin. Phys. B, 2015, 24(6): 060702.
No Suggested Reading articles found!