|
Special Issue:
SPECIAL TOPIC — Quantum communication and quantum network
|
| SPECIAL TOPIC — Quantum communication and quantum network |
Prev
Next
|
|
|
Multicast-oriented key provision in hybrid DV/CV multi-domain quantum networks |
| Xinyu Chen(陈欣宇)1, Yuan Cao(曹原)1,†, Yuxiang Lu(陆宇翔)1, Yue Chen(陈越)1, Kunpeng Zheng(郑昆朋)2, Xiaosong Yu(郁小松)2, Yongli Zhao(赵永利)2, Jie Zhang(张杰)2, and Qin Wang(王琴)1 |
1 School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; 2 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
|
|
Abstract As the cornerstone of future information security, quantum key distribution (QKD) is evolving towards large-scale hybrid discrete-variable/continuous-variable (DV/CV) multi-domain quantum networks. Meanwhile, multicast-oriented multi-party key negotiation is attracting increasing attention in quantum networks. However, the efficient key provision for multicast services over hybrid DV/CV multi-domain quantum networks remains challenging, due to the limited probability of service success and the inefficient utilization of key resources. Targeting these challenges, this study proposes two key-resource-aware multicast-oriented key provision strategies, namely the link distance-resource balanced key provision strategy and the maximum shared link key provision strategy. The proposed strategies are applicable to hybrid DV/CV multi-domain quantum networks, which are typically implemented by GG02-based intra-domain connections and BB84-based inter-domain connections. Furthermore, the multicast-oriented key provision model is formulated, based on which two heuristic algorithms are designed, i.e., the shared link distance-resource (SLDR) dependent and the maximum shared link distance-resource (MSLDR) dependent multicast-oriented key provision algorithms. Simulation results verify the applicability of the designed algorithms across different multi-domain quantum networks, and demonstrate their superiority over the benchmark algorithms in terms of the success probability of multicast service requests, the number of shared links, and the key resource utilization.
|
Received: 25 April 2025
Revised: 16 June 2025
Accepted manuscript online: 08 July 2025
|
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
| |
03.67.Hk
|
(Quantum communication)
|
| |
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
| |
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 62201276, 62350001, U22B2026, and 62425105), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0300701), and the Key R&D Program (Industry Foresight and Key Core Technologies) of Jiangsu Province (Grant No. BE2022071). |
Corresponding Authors:
Yuan Cao
E-mail: yuancao@njupt.edu.cn
|
Cite this article:
Xinyu Chen(陈欣宇), Yuan Cao(曹原), Yuxiang Lu(陆宇翔), Yue Chen(陈越), Kunpeng Zheng(郑昆朋), Xiaosong Yu(郁小松), Yongli Zhao(赵永利), Jie Zhang(张杰), and Qin Wang(王琴) Multicast-oriented key provision in hybrid DV/CV multi-domain quantum networks 2025 Chin. Phys. B 34 090301
|
[1] Cohen A, Cohen A,MédardMand Gurewitz O 2019 IEEE Trans. Commun. 67 708 [2] Park C S 2020 IEEE Internet Things J. 7 3441 [3] Skorin-Kapov N, Furdek M, Zsigmond S and Wosinska L 2016 IEEE Commun. Mag. 54 110 [4] Cao Y, Zhao Y, Wang Q, Zhang J, Ng S X and Hanzo L 2022 IEEE Commun. Surv. Tutor. 24 839 [5] Li Z, Xue K, Li J, Chen L, Li R, Wang Z, Yu N, Wei D S, Sun Q and Lu J 2023 IEEE Commun. Surv. Tutor. 25 2133 [6] Li J, Wang M, Xue K, Li R, Yu N, Sun Q and Lu J 2022 IEEE Trans. Commun. 70 6748 [7] Pan D, Long G L, Yin L, Sheng Y B, Ruan D, Ng S X, Lu J and Hanzo L 2024 IEEE Commun. Surv. Tutor. 26 1898 [8] Pan D, Liu Y C, Niu P, Zhang H, Zhang F, Wang M, Song X T, Chen X, Zheng C and Long G L 2025 Sci. Adv. 11 eadt4627 [9] Chen T Y, Jiang X, Tang S B, Zhou L, Yuan X, Zhou H, Wang J, Liu Y, Chen L K, LiuWY, Zhang Q, Chen Z B, Pan JWand Zhang J 2021 npj Quantum Inf. 7 134 [10] Dynes J, Wonfor A, Tam W S, Sharpe A, Takahashi R, Lucamarini M, Plews A, Yuan Z, Dixon A, Lavieville J, Radig C, Kindness S, Penty R and Shields A 2019 npj Quantum Inf. 5 101 [11] Lord A, Woodward R, Murai S, Sato H, Dynes J, Wright P, White C, Davey R, Wilkinson M, Penty R and Shields A 2023 Proc. Opt. Fiber Commun. Conf. (San Diego) pp. W4K.4 [12] Aguado A, Lopez V, Lopez D, Peev M, Poppe A, Pastor A, Folgueira J and Martin V 2019 IEEE Commun. Mag. 57 20 [13] Huang D, Huang P, Li H, Wang T, Zhou Y and Zeng G 2016 Opt. Lett. 41 3511 [14] Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang S, Jiang X, Wang J, Zhang T Y, Wang X B, Ma X F, Li H W, Zhang Q, Chen T Y and Pan J W 2016 Phys. Rev. X 6 011024 [15] Wang S, Chen W, Yin Z Q, Li H W, He D Y, Li Y H, Zhou Z, Song X T, Li F Y, Wang D, Chen X F, Han Y G, Huang J Z, Guo J F, Hao P L, Li M, Zhang C M, Liu D, Liang W Y, Miao C H, Wu P, Guo G C and Han Z F 2014 Opt. Express 22 21739 [16] Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li L, Liu N L, Xu B, Wang X B, Peng C Z and Pan J W 2021 Nature 589 214 [17] Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Comput. Syst. Signal Process. (Bangalore) p175 [18] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902 [19] Cao Y, Zhao Y, Zhang J and Wang Q 2022 IEEE Commun. Mag. 60 38 [20] Fan-Yuan G J, Lu F Y,Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C and Han Z F 2021 Photon. Res. 9 1881 [21] Wang T, Xu Y, Zhao H, Li L, Huang P and Zeng G 2023 Opt. Lett. 48 719 [22] Cao Y, Zhao Y, Zhang J, Wang Q, Niyato D and Hanzo L 2022 IEEE Netw. 36 14 [23] Guo M, Cao Y, Zhu J, Zhou X, Zhang C, Yu X, Zhao Y, Zhang J and Wang Q 2023 J. Opt. Commun. Netw. 15 700 [24] Zhu J, Cao Y, Guo M, Zhou X, Zhang C, Li J, Yu X, Zhao Y, Zhang J and Wang Q 2024 J. Opt. Commun. Netw. 16 735 [25] Cao Y, Yu X, Zhao Y, Zhang C, Zhou X, Zhang J and Wang Q 2025 Chin. Phys. B 34 010310 [26] Martin V, Brito J P, Ortíz L, Méndez R, Buruaga J, Vicente R J, Sebasti án-Lombraña A, Rincón D, Pérez F, Sánchez C, Martín J, Martín J C, Martín J M, Martín J L and Martín J A 2024 npj Quantum Inf. 10 80 [27] Ren S, Wang Y and Su X 2022 Sci. China Inf. Sci. 65 200502 [28] Zhang Y, Bian Y, Li Z, Yu S and Guo H 2024 Appl. Phys. Rev. 11 011318 [29] Dong K, Zhao Y, Yang T, Li Y, Nag A, Yu X and Zhang J 2020 J. Opt. Commun. Netw. 12 120 [30] Dong K, Zhao Y, Nag A, Yu X and Zhang J 2020 Opt. Eng. 59 065102 [31] He X, Li L, Han D, Zhao Y, Nag A, Wang W, Wang H, Cao Y and Zhang J 2022 J. Opt. Commun. Netw. 14 190 [32] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325 [33] Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326 [34] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343 [35] Mao Y, Wang B X, Zhao C, Wang G, Wang R, Wang H, Zhou F, Nie J, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y and Pan J W 2018 Opt. Express 26 6010 [36] Wang H, Pi Y, Huang W, Li Y, Shao Y, Yang J, Liu J, Zhang C, Zhang Y and Xu B 2020 Opt. Express 28 32882 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|