1 Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract Quantum key distribution (QKD) is a method for secure communication that utilizes quantum mechanics principles to distribute cryptographic keys between parties. Integrated photonics offer benefits such as compactness, scalability, energy efficiency and the potential for extensive integration. We have achieved BB84 phase encoding and decoding, time-bin phase QKD, and the coherent one-way (COW) protocol on a planar lightwave circuit (PLC) platform. At the optimal temperature, our chip successfully prepared quantum states, performed decoding and calculated the secure key rate of the time-bin phase-decoding QKD to be 80.46 kbps over a 20 km transmission with a quantum bit error rate (QBER) of 4.23%. The secure key rate of the COW protocol was 18.18 kbps, with a phase error rate of 3.627% and a time error rate of 0.377%. The uniqueness of this technology lies in its combination of high integration and protocol flexibility, providing an innovative solution for the development of future quantum communication networks.
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0300701), the National Key Research and Development Program of China (Grant No. 2018YFA0306403), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB43000000).
Corresponding Authors:
Jia-Shun Zhang, Jun-Ming An
E-mail: zhangjiashun@semi.ac.cn;junming@semi.ac.cn
Cite this article:
Chun-Xue Zhang(张春雪), Jian-Guang Li(李建光), Yue Wang(王玥), Wei Chen(陈巍), Jia-Shun Zhang(张家顺), and Jun-Ming An(安俊明) Multi-protocol quantum key distribution decoding chip 2025 Chin. Phys. B 34 050303
[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145 [2] Bennett C H, Bessette F, Brassard G, Salvail L and Solin J 1992 J. Cryptol. 5 3 [3] Lo H K, Curty M and Tamaki K 2014 Nat. Photon. 8 595 [4] Grünenfelder F, Boaron A, Resta G V, Perrenoud M, Rusca D, Barreiro C, Houlmann R, Sax R, Stasi L, El-Khoury S, Hänggi E, Bosshard N, Bussières F and Zbinden H 2023 Nat. Photon. 17 422 [5] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L X, Wang X B, Zhang Q and Pan J W 2023 Phys. Rev. Lett. 130 210801 [6] Wang S, Yin Z Q, He D Y, ChenW,Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C and Han Z F 2022 Nat. Photon. 16 154 [7] Huang C F, Chen Y, Luo T T, He W J, Liu X, Zhang Z R and Wei K J 2024 Sci. China Phys. Mech. Astron. 67 240312 [8] Wang W Y, Wang R, Hu C Q, Zapatero V, Qian L, Qi B, Curty M and Lo H K 2023 Phys. Rev. Lett. 130 220801 [9] Liu X, Luo D, Luo Z C, Li S Z, Zhang Z R and Wei K J 2024 Phys. Rev. Appl. 22 064018 [10] Liu Q, Huang Y M, Du Y Q, Zhao Z G, Geng M M, Zhang Z R and Wei K J 2022 Entropy 24 1334 [11] Sax R, Boaron A, Boso G, Atzeni S, Crespi A, Grünenfelder F, Rusca D, Al-Saadi A, Bronzi D, Kupijai S, Rhee H, Osellame R and Zbinden H 2023 Photon. Res. 11 1007 [12] Du H, Paraiso T K, Pittaluga M, Lo Y S, Dolphin J A and Shields A J 2024 Optica 11 1385 [13] Du Y Q, Zhu X, Hua X, Zhao Z G, Hu X, Qian Y, Xiao X and Wei K J 2023 Chip 2 100039 [14] Wei K J, Hu X, Du Y Q, Hua X, Zhao Z G, Ye Chen, Huang C F and Xiao X 2023 Photon. Res. 11 1364 [15] Paraïso T K, Roger T, Marangon D G, Marco I D, Sanzaro M, Woodward R I, Dynes J F, Yuan Z L and Shields A J 2021 Nat. Photon. 15 850 [16] Zhu C X, Chen Z Y, Li Y, Wang X Z, Wang C Z, Zhu Y L, Liang F T, Cai W Q, Jin G, Liao S K and Peng C Z 2022 Phys. Rev. Appl. 17 064034 [17] Zhang C X, Wu D, Cui P W, Ma J C, Wang Y and An J M 2023 Chin. Phys. B 32 124207 [18] Zhang Q Y, Xu P and Zhu S N 2018 Chin. Phys. B 27 054207 [19] Honjo T, Inoue K and Takahashi H 2004 Opt. Lett. 29 2797 [20] Harris N C, Bunandar D, Pant M, Steinbrecher G R, Mower J, Prabhu M, Baehr-Jones T, Hochberg M and Englund D 2016 Nanophotonics 5 456 [21] Nambu Y, Yoshino K and Tomita A 2008 J. Mod. Opt. 55 1953 [22] Zhang G W, Ding Y Y, Chen W, Wang F X, Ye P, Huang G Z, Wang S, Yin Z Q, An J M, Guo G C and Han Z F 2021 Photon. Res. 9 2176 [23] Zhang G W, Chen W, Fan-Yuan G J, Zhang L, Wang F X, Wang S, Yin Z Q, He D Y, LiuWen, An J M, Guo G C and Han Z F 2022 Sci. China Inf. Sci. 65 200506 [24] Ma C X, Sacher W D, Tang Z Y, Mikkelsen Jared C, Yang Y, Xu F H, Thiessen T, Lo H K and Poon J K S 2016 Optica 3 1274 [25] Sibson P, Kennard J E, Stanisic S, Erven C, O’Brien J L and Thompson M G 2017 Optica 4 172 [26] Cai H, Long C M, DeRose C T, Boynton N, Urayama J J, Camacho R, Pomerene A, Starbuck A L, Trotter D C, Davids P S and Lentine A L 2017 Opt. Express 25 12282 [27] Geng W, Zhang C, Zheng Y, He J, Zhou C and Kong Y 2019 Opt. Express 27 29045 [28] Wei K, Li W, Tan H, Li Y, Min H, Zhang W J, Li H, You L X, Wang Z, Jiang X, Chen T Y, Liao S K, Peng C Z, Xu F H and Pan J W 2020 Phys. Rev. X 10 031030 [29] Cao L, Luo W, Wang Y X, Zou J, Yan R D, Cai H, Zhang Y, Hu X L, Jiang C, Fan W J, Zhou X Q, Dong B, Luo X S, Lo G Q, Wang Y X, Xu Z W, Sun S H, Wang X B, Hao Y L, Jin Y F, Kwong D L, Kwek L C and Liu A Q 2020 Phys. Rev. Applied 14 011001 [30] LiW, Zhang L K, Tan H, Lu Y, Liao S K, Huang J, Li H,Wang Z, Mao H K, Yan B, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H and Pan J W 2023 Nat. Photon. 17 416 [31] Sibson P, Erven C, Godfrey M, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, TannerMG, Natarajan C M, Hadfield R H, O’Brien J L and Thompson M G 2017 Nat. Commun. 8 13984 [32] Dolphin J A, Paraïso T K, Du H, Woodward R I, Marangon D G and Shields A J 2023 npj Quantum Inf. 9 84 [33] Maker A J and Armani A M 2011 Opt. Lett. 36 3729 [34] Nambu Y, Hatanaka T and Nakamura K 2004 Jpn. J. Appl. Phys. 43 L1109 [35] Tanaka A, Fujiwara M, Nam S W, Nambu Y, Takahashi S, Maeda W, Yoshino K I, Miki S, Baek B,Wang Z, Tajima A, Sasaki M and Tomita A 2008 Opt. Express 16 11354 [36] Korzh B, Walenta N, Houlmann R and Zbinden H 2013 Opt. Express 21 19579 [37] Li X, Ren M Z, Zhang J S, Wang L L, Chen W, Wang Y, Yin X Y, Wu Y D and An J M 2021 Photon. Res. 9 222 [38] Lo H K and Preskill J 2007 Quantum Info. Comput. 7 431 [39] Li X, Wang L L, Zhang J, Chen W, Wang Y, Wu Y D and An J M 2022 Chin. Phys. B 31 064212 [40] Branciard C, Gisin N and Scarani V 2008 New J. Phys. 10 013031 [41] Li X, Wang L L, Zhang J S, Chen W, Wang Y, Wu D and An J M 2022 Chin. Phys. B 31 010304 [42] Wu D, Chen S K, Cui P W, Ma J C, Chen W, Zhang J S, Wang Y, Li J G and An J M 2023 IEEE Photonics J. 15 1
Research progress in quantum key distribution Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.