Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097804    DOI: 10.1088/1674-1056/ade064
Special Issue: SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems Prev   Next  

Machine learning approach to reconstruct dephasing time from solid HHG spectra

Jiahao Liu(刘佳豪)1, Xi Zhao(赵曦)1,†, Jun Wang(王俊)2,‡, and Songbin Zhang(张松斌)1,§
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China;
2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  The dephasing time $ T_2 $ is a fundamental parameter that characterizes the coherence of electronic states and electron-phonon interactions in condensed matter physics. Accurate measurement of $ T_2 $ is essential for elucidating ultrafast electronic and phononic processes, which are crucial for the development of advanced electronic, optoelectronic, and quantum devices. However, due to the complexity of solid-state systems with their intricate band structures and strong many-body interactions, reconstructing $ T_2 $ remains a long-term challenge for both condensed matter physics and optical science. In this work, we introduce a machine learning (ML) approach to retrieve $ T_2 $ from the high-order harmonic generation (HHG) spectrum resulting from the interaction between a strong infrared (IR) laser pulse and solid-state material. The consistency between the experimental and reconstructed HHG spectra validates the efficiency of our scheme. Our ML method offers two key advantages: first, it does not require stringent experimental conditions, and second, the optimization process is fully automated and more reliable than empirical selection of dephasing time values. The ability of our method to reconstruct dephasing time from solid HHG spectra provides a powerful tool for probing the intrinsic properties of materials under extreme conditions. Besides, our method provides another significant advantage, which offers a direct approach to calculating the quantum tunneling time of carriers between different energy bands under light-induced excitation.
Keywords:  high-order harmonic generation      dephasing time      machine learning  
Received:  22 February 2025      Revised:  01 May 2025      Accepted manuscript online:  04 June 2025
PACS:  78.47.jb (Transient absorption)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  43.60.Np (Acoustic signal processing techniques for neural nets and learning systems)  
Fund: This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. GK202207012), QCYRCXM-2022-241, the National Key Research and Development Program of China (Grant No. 2022YFE0134200), the Natural Science Foundation of Jilin Province (Grant No. 20220101016JC), and the National Natural Science Foundation of China (Grant Nos. 12374238, 11934004, and 11974230). C.C.S. receives partial support from the National Natural Science Foundation of China (Grant No. 12274470) and the Natural Science Foundation of Hunan Province for Distinguished Young Scholars (Grant No. 2022JJ10070).
Corresponding Authors:  Xi Zhao, Xi Zhao, Songbin Zhang     E-mail:  zhaoxi719@snnu.edu.cn;wangjun86@jlu.edu.cn;song-bin.zhang@snnu.edu.cn

Cite this article: 

Jiahao Liu(刘佳豪), Xi Zhao(赵曦), Jun Wang(王俊), and Songbin Zhang(张松斌) Machine learning approach to reconstruct dephasing time from solid HHG spectra 2025 Chin. Phys. B 34 097804

[1] Huibers A G, Switkes M, Marcus C M, Campman K and Gossard A C 1997 Phys. B 81 348
[2] Guo Z, Habenicht B F, Liang W Z and Prezhdo O V 2010 Phys. Rev. B 81 760
[3] Ding S and McDowell C A 1999 J. Phys.: Condens. Matter 11 L199
[4] Ilzhöfer P, Sohmen M, Durastante G, Politi C, Trautmann A, Natale G, Morpurgo G, Giamarchi T, Chomaz L, Mark M, et al. 2021 Nat. Phys. 17 356
[5] Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922
[6] Cywiński Ł, Lutchyn R M, Nave C P and Das Sarma S 2008 Phys. Rev. B 77 174509
[7] Kelly S P, Poschinger U, Schmidt-Kaler F, FisherMand Marino J 2023 SciPost Phys. 15 250
[8] Streltsov A, Adesso G and PlenioMB 2017 Rev. Mod. Phys. 89 041003
[9] Du T Y and Ma C 2022 Phys. Rev. A 105 053125
[10] Orlando G, Ho T S and Chu S I 2020 J. Opt. Soc. Am. B 37 1540
[11] Siddiqi I 2021 Nat. Rev. Mater. 6 875
[12] Assaf B A, Cardinal T, Wei P, Katmis F, Moodera J S and Heiman D 2013 Appl. Phys. Lett. 102 012102
[13] Chow W W, Schneider H and Phillips M 2003 Phys. Rev. A 68 053802
[14] Du T Y 2019 Phys. Rev. A 100 053401
[15] Aslam N, Zhou H, Urbach E K, Turner M J, Walsworth R L, Lukin M D and Park H 2023 Nat. Rev. Phys. 5 157
[16] Picon J D, Bussac M and Zuppiroli L 2007 Phys. Rev. B 75 235106
[17] Li Y C and Lin H Q 2016 Sci. Rep. 6 26365
[18] Fan X, Takagahara T, Cunningham J and Wang H 1998 Solid State Commun. 108 857
[19] Dey P, Paul J, Wang Z, Stevens C, Liu C, Romero A, Shan J, Hilton D and Karaiskaj D 2016 Phys. Rev. Lett. 116 127402
[20] Bermeister A, Keith D and Culcer D 2014 Appl. Phys. Lett. 105 192102
[21] Dugaev V, Sherman E Y and Barnás J 2011 Phys. Rev. B 83 085306
[22] Hase M and Kitajima M 2010 J. Phys.: Condens. Matter 22 073201
[23] Kilen I, Kolesik M, Hader J, Moloney J V, Huttner U, Hagen M K and Koch S W 2020 Phys. Rev. Lett. 125 083901
[24] Yang J, Sun Q, Ueno K, Shi X, Oshikiri T, Misawa H and Gong Q 2018 Nat. Commun. 9 4858
[25] Albash T and Lidar D A 2015 Phys. Rev. A 91 062320
[26] Montañez-Barrera J, von Spakovsky M R, Damian Ascencio C E and Cano-Andrade S 2022 Phys. Rev. A 106 032426
[27] Du T Y and Bian X B 2017 Opt. Express 25 151
[28] Qiao Y, Chen J, Li Z, Liu Y, Jiang S, Liu W, Yang Y and Chen J 2024 Opt. Lett. 49 3986
[29] Qiao Y, Chen J, Zhou S, Chen J, Jiang S and Yang Y 2024 Chin. Phys. Lett. 41 014205
[30] Li L, Lan P, Zhu X, Huang T, Zhang Q, Lein M and Lu P 2019 Phys. Rev. Lett. 122 193901
[31] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F and Reis D A 2011 Nat. Phys. 7 138
[32] Uzan A J, Orenstein G, Jimeńez-Galań Á , McDonald C, Silva R E, Bruner B D, Klimkin N D, Blanchet V, Arusi-Parpar T, Krüger M, et al. 2020 Nat. Photonics 14 183
[33] Qian C, Yu C, Jiang S, Zhang T, Gao J, Shi S, Pi H, Weng H and Lu R 2022 Phys. Rev. X 12 021030
[34] Mahesh B 2020 Int. J. Sci. Res. 9 381
[35] Jordan M I and Mitchell T M 2015 Science 349 255
[36] Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T and Goulielmakis E 2015 Nature 521 498
[37] You Y S, Wu M, Yin Y, Chew A, Ren X, Gholam-Mirzaei S, Browne D A, Chini M, Chang Z, Schafer K J, et al. 2017 Opt. Lett. 42 1816
[38] Cavalieri A L,Müller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S, et al. 2007 Nature 449 1029
[39] Ramasesha K, Leone S R and Neumark D M 2016 Annu. Rev. Phys. Chem. 67 41
[40] Borsch M, Schmid C P, Weigl L, Schlauderer S, Hofmann N, Lange C, Steiner J, Koch S, Huber R and Kira M 2020 Science 370 1204
[41] Lakhotia H, Kim H, Zhan M, Hu S, Meng S and Goulielmakis E 2020 Nature 583 55
[42] Vampa G, Lu J, You Y S, Baykusheva D R, Wu M, Liu H, Schafer K J, Gaarde M B, Reis D A and Ghimire S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 144003
[43] Park J, Subramani A, Kim S and Ciappina M F 2022 Adv. Phys.: X 7 2003244
[44] Han S, Ortmann L, Kim H, Kim Y W, Oka T, Chacon A, Doran B, Ciappina M, Lewenstein M, Kim S W, et al. 2019 Nat. Commun. 10 3272
[45] Zhou T, Wu W, Zhang J, Yu S and Fang L 2023 Sci. Adv. 9 eadg4391
[46] Bedolla E, Padierna L C and Castaneda-Priego R 2020 J. Phys.: Condens. Matter 33 053001
[47] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431
[48] Carrasquilla J 2020 Adv. Phys.: X 5 1797528
[49] Zahavy T, Dikopoltsev A, Moss D, Haham G I, Cohen O, Mannor S and Segev M 2018 Optica 5 666
[50] White J and Chang Z 2019 Opt. Express 27 4799
[51] Brunner C, Duensing A, Schröder C, Mittermair M, Golkov V, Pollanka M, Cremers D and Kienberger R 2022 Opt. Express 30 15669
[52] Zhao X, Wang S J, Yu W W, Wei H, Wei C, Wang B, Chen J and Lin C D 2020 Phys. Rev. Appl. 13 034043
[53] Zhao X, Wei H, Wu Y and Lin C D 2017 Phys. Rev. A 95 043407
[54] Zhao X, Wei H, Wu Y and Lin C D 2017 Phys. Rev. A 95 043407
[55] Zhao Y T, Ma S y, Jiang S C, Yang Y J, Zhao X and Chen J G 2019 Opt. Express 27 34392
[56] Qiao Y, Huo Y, Liang H, Chen J, Liu W, Yang Y and Jiang S 2023 Phys. Rev. B 107 075201
[57] Wu D, Li L, Zhan Y, Huang T, Cui H, Li J, Lan P and Lu P 2022 Phys. Rev. A 105 063101
[58] Vampa G, McDonald C, Orlando G, Klug D, Corkum P and Brabec T 2014 Phys. Rev. Lett. 113 073901
[59] Cao J, Li F, Bai Y, Liu P and Li R 2021 Opt. Express 29 4830
[60] Kolesik M and Moloney J 2023 Phys. Rev. B 108 115433
[61] Vampa G and Brabec T 2017 J. Phys. B: At. Mol. Opt. Phys. 50 083001
[62] Mirjalili S 2019 Stud. Comput. Intell. 780 43
[63] Wang D, Tan D and Liu L 2018 Soft Comput. 22 387
[64] Koessler E and Almomani A 2021 Optim. Eng. 22 1539
[65] Wikmark H, Guo C, Vogelsang J, Smorenburg P W, Coudert-Alteirac H, Lahl J, Peschel J, Rudawski P, Dacasa H, Carlström S, Maclot S, GaardeMB, Johnsson P, Arnold C L and L’Huillier A 2019 Proc. Natl. Acad. Sci. USA 116 4779
[66] Brown G G, Jiménez-Galán A, Silva R E F and Ivanov M 2024 Phys. Rev. Res. 6 043005
[67] Zhao X, Liu J, Jiang S, Chen J, Wang J and Zhang S 2025 Opticaopen: 28225302.v1[physics.atm-clus]
[68] Yang S, Liu X, Zhang H, Song X, Zuo R, Meier T and Yang W 2024 Opt. Express 32 15862
[69] Langer F, Hohenleutner M, Schmid C P, Pöllmann C, Nagler P, Korn T, Schüller C, Sherwin M, Huttner U, Steiner J, et al. 2016 Nature 533 225
[70] Jiang S, Chen J, Wei H, Yu C, Lu R and Lin C 2018 Phys. Rev. Lett. 120 253201
[1] 3D-GTDSE: A GPU-based code for solving 3D-TDSE in Cartesian coordinates
Ke Peng(彭科), Aihua Liu(刘爱华), Jun Wang(王俊), and Xi Zhao(赵曦). Chin. Phys. B, 2025, 34(9): 094203.
[2] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[3] Experimental manipulation of fine structures in high harmonic spectrum of aligned CO2 molecules
Ge-Wen Wang(王革文), Yi-Wen Zhao(赵逸文), Yi-Chen Wang(王一琛), Jing Ma(马婧), Bo-Dun Liu(刘博敦), Wei Jiang(姜威), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2025, 34(6): 063301.
[4] High-order harmonic generation of methane in an elliptically polarized field
Shu-Shan Zhou(周书山), Yu-Long Li(李玉龙), Zhi-Xue Zhao(赵志学), Man Xing(幸满), Nan Xu(许楠), Hao Wang(王浩), Jun Wang(王俊), Xi Zhao(赵曦), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2025, 34(6): 063202.
[5] Frequency shifts of high-order harmonics from ZnO crystals by chirped laser pulses
Yu Zhao(赵宇), Xiao-Jin Liu(刘晓瑾), Shuang Wang(王爽), Xiao-Xin Huo(霍晓鑫), Yun-He Xing(邢云鹤), and Jun Zhang(张军). Chin. Phys. B, 2025, 34(3): 033201.
[6] Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution: A machine learning interatomic potential-assisted investigation
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(2): 028201.
[7] Influence of excited states in high-order harmonic generation at intense mid-infrared field
Yan Fang(方言), Da-Wei Tian(田大纬), Yue Cao(曹玥), Xiao-Lei Hao(郝小雷), and Zheng Shu(舒正). Chin. Phys. B, 2025, 34(10): 103201.
[8] Improving performance of screening MM/PBSA in protein-ligand interactions via machine learning
Yuan-Qiang Chen(陈远强), Yao Xu(徐耀), Yu-Qiang Ma(马余强), and Hong-Ming Ding(丁泓铭). Chin. Phys. B, 2025, 34(1): 018701.
[9] Database of ternary amorphous alloys based on machine learning
Xuhe Gong(巩旭菏), Ran Li(李然), Ruijuan Xiao(肖睿娟), Tao Zhang(张涛), and Hong Li(李泓). Chin. Phys. B, 2025, 34(1): 016101.
[10] Classifying extended, localized and critical states in quasiperiodic lattices via unsupervised learning
Bohan Zheng(郑博涵), Siyu Zhu(朱思宇), Xingping Zhou(周兴平), and Tong Liu(刘通). Chin. Phys. B, 2025, 34(1): 017103.
[11] Variational data encoding and correlations in quantum-enhanced machine learning
Ming-Hao Wang(王明浩) and Hua Lü(吕桦). Chin. Phys. B, 2024, 33(9): 090307.
[12] Interference of harmonics emitted by different tunneling momentum channels in laser fields
Ling-Yu Zhang(张玲玉), Zhuo-Xuan Xie(谢卓璇), Can Wang(王灿), Xin-Lei Ge(葛鑫磊), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(9): 093201.
[13] Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance
Rui Xin(辛睿), Yaqi Wang(王亚祺), Ze Fang(房泽), Fengji Zheng(郑凤基), Wen Gao(高雯), Dashi Fu(付大石), Guoqing Shi(史国庆), Jian-Yi Liu(刘建一), and Yongcheng Zhang(张永成). Chin. Phys. B, 2024, 33(8): 087701.
[14] Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source
Menghui Mao(毛梦辉), Wei Zhou(周唯), Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(8): 080301.
[15] A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system
Bin Liu(刘斌) and Yixi Wang(王译浠). Chin. Phys. B, 2024, 33(8): 084401.
No Suggested Reading articles found!