|
Special Issue:
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
|
| SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems |
Prev
Next
|
|
|
Machine learning approach to reconstruct dephasing time from solid HHG spectra |
| Jiahao Liu(刘佳豪)1, Xi Zhao(赵曦)1,†, Jun Wang(王俊)2,‡, and Songbin Zhang(张松斌)1,§ |
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China; 2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
|
|
Abstract The dephasing time $ T_2 $ is a fundamental parameter that characterizes the coherence of electronic states and electron-phonon interactions in condensed matter physics. Accurate measurement of $ T_2 $ is essential for elucidating ultrafast electronic and phononic processes, which are crucial for the development of advanced electronic, optoelectronic, and quantum devices. However, due to the complexity of solid-state systems with their intricate band structures and strong many-body interactions, reconstructing $ T_2 $ remains a long-term challenge for both condensed matter physics and optical science. In this work, we introduce a machine learning (ML) approach to retrieve $ T_2 $ from the high-order harmonic generation (HHG) spectrum resulting from the interaction between a strong infrared (IR) laser pulse and solid-state material. The consistency between the experimental and reconstructed HHG spectra validates the efficiency of our scheme. Our ML method offers two key advantages: first, it does not require stringent experimental conditions, and second, the optimization process is fully automated and more reliable than empirical selection of dephasing time values. The ability of our method to reconstruct dephasing time from solid HHG spectra provides a powerful tool for probing the intrinsic properties of materials under extreme conditions. Besides, our method provides another significant advantage, which offers a direct approach to calculating the quantum tunneling time of carriers between different energy bands under light-induced excitation.
|
Received: 22 February 2025
Revised: 01 May 2025
Accepted manuscript online: 04 June 2025
|
|
PACS:
|
78.47.jb
|
(Transient absorption)
|
| |
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
| |
43.60.Np
|
(Acoustic signal processing techniques for neural nets and learning systems)
|
|
| Fund: This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. GK202207012), QCYRCXM-2022-241, the National Key Research and Development Program of China (Grant No. 2022YFE0134200), the Natural Science Foundation of Jilin Province (Grant No. 20220101016JC), and the National Natural Science Foundation of China (Grant Nos. 12374238, 11934004, and 11974230). C.C.S. receives partial support from the National Natural Science Foundation of China (Grant No. 12274470) and the Natural Science Foundation of Hunan Province for Distinguished Young Scholars (Grant No. 2022JJ10070). |
Corresponding Authors:
Xi Zhao, Xi Zhao, Songbin Zhang
E-mail: zhaoxi719@snnu.edu.cn;wangjun86@jlu.edu.cn;song-bin.zhang@snnu.edu.cn
|
Cite this article:
Jiahao Liu(刘佳豪), Xi Zhao(赵曦), Jun Wang(王俊), and Songbin Zhang(张松斌) Machine learning approach to reconstruct dephasing time from solid HHG spectra 2025 Chin. Phys. B 34 097804
|
[1] Huibers A G, Switkes M, Marcus C M, Campman K and Gossard A C 1997 Phys. B 81 348 [2] Guo Z, Habenicht B F, Liang W Z and Prezhdo O V 2010 Phys. Rev. B 81 760 [3] Ding S and McDowell C A 1999 J. Phys.: Condens. Matter 11 L199 [4] Ilzhöfer P, Sohmen M, Durastante G, Politi C, Trautmann A, Natale G, Morpurgo G, Giamarchi T, Chomaz L, Mark M, et al. 2021 Nat. Phys. 17 356 [5] Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922 [6] Cywiński Ł, Lutchyn R M, Nave C P and Das Sarma S 2008 Phys. Rev. B 77 174509 [7] Kelly S P, Poschinger U, Schmidt-Kaler F, FisherMand Marino J 2023 SciPost Phys. 15 250 [8] Streltsov A, Adesso G and PlenioMB 2017 Rev. Mod. Phys. 89 041003 [9] Du T Y and Ma C 2022 Phys. Rev. A 105 053125 [10] Orlando G, Ho T S and Chu S I 2020 J. Opt. Soc. Am. B 37 1540 [11] Siddiqi I 2021 Nat. Rev. Mater. 6 875 [12] Assaf B A, Cardinal T, Wei P, Katmis F, Moodera J S and Heiman D 2013 Appl. Phys. Lett. 102 012102 [13] Chow W W, Schneider H and Phillips M 2003 Phys. Rev. A 68 053802 [14] Du T Y 2019 Phys. Rev. A 100 053401 [15] Aslam N, Zhou H, Urbach E K, Turner M J, Walsworth R L, Lukin M D and Park H 2023 Nat. Rev. Phys. 5 157 [16] Picon J D, Bussac M and Zuppiroli L 2007 Phys. Rev. B 75 235106 [17] Li Y C and Lin H Q 2016 Sci. Rep. 6 26365 [18] Fan X, Takagahara T, Cunningham J and Wang H 1998 Solid State Commun. 108 857 [19] Dey P, Paul J, Wang Z, Stevens C, Liu C, Romero A, Shan J, Hilton D and Karaiskaj D 2016 Phys. Rev. Lett. 116 127402 [20] Bermeister A, Keith D and Culcer D 2014 Appl. Phys. Lett. 105 192102 [21] Dugaev V, Sherman E Y and Barnás J 2011 Phys. Rev. B 83 085306 [22] Hase M and Kitajima M 2010 J. Phys.: Condens. Matter 22 073201 [23] Kilen I, Kolesik M, Hader J, Moloney J V, Huttner U, Hagen M K and Koch S W 2020 Phys. Rev. Lett. 125 083901 [24] Yang J, Sun Q, Ueno K, Shi X, Oshikiri T, Misawa H and Gong Q 2018 Nat. Commun. 9 4858 [25] Albash T and Lidar D A 2015 Phys. Rev. A 91 062320 [26] Montañez-Barrera J, von Spakovsky M R, Damian Ascencio C E and Cano-Andrade S 2022 Phys. Rev. A 106 032426 [27] Du T Y and Bian X B 2017 Opt. Express 25 151 [28] Qiao Y, Chen J, Li Z, Liu Y, Jiang S, Liu W, Yang Y and Chen J 2024 Opt. Lett. 49 3986 [29] Qiao Y, Chen J, Zhou S, Chen J, Jiang S and Yang Y 2024 Chin. Phys. Lett. 41 014205 [30] Li L, Lan P, Zhu X, Huang T, Zhang Q, Lein M and Lu P 2019 Phys. Rev. Lett. 122 193901 [31] Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F and Reis D A 2011 Nat. Phys. 7 138 [32] Uzan A J, Orenstein G, Jimeńez-Galań Á , McDonald C, Silva R E, Bruner B D, Klimkin N D, Blanchet V, Arusi-Parpar T, Krüger M, et al. 2020 Nat. Photonics 14 183 [33] Qian C, Yu C, Jiang S, Zhang T, Gao J, Shi S, Pi H, Weng H and Lu R 2022 Phys. Rev. X 12 021030 [34] Mahesh B 2020 Int. J. Sci. Res. 9 381 [35] Jordan M I and Mitchell T M 2015 Science 349 255 [36] Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T and Goulielmakis E 2015 Nature 521 498 [37] You Y S, Wu M, Yin Y, Chew A, Ren X, Gholam-Mirzaei S, Browne D A, Chini M, Chang Z, Schafer K J, et al. 2017 Opt. Lett. 42 1816 [38] Cavalieri A L,Müller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S, et al. 2007 Nature 449 1029 [39] Ramasesha K, Leone S R and Neumark D M 2016 Annu. Rev. Phys. Chem. 67 41 [40] Borsch M, Schmid C P, Weigl L, Schlauderer S, Hofmann N, Lange C, Steiner J, Koch S, Huber R and Kira M 2020 Science 370 1204 [41] Lakhotia H, Kim H, Zhan M, Hu S, Meng S and Goulielmakis E 2020 Nature 583 55 [42] Vampa G, Lu J, You Y S, Baykusheva D R, Wu M, Liu H, Schafer K J, Gaarde M B, Reis D A and Ghimire S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 144003 [43] Park J, Subramani A, Kim S and Ciappina M F 2022 Adv. Phys.: X 7 2003244 [44] Han S, Ortmann L, Kim H, Kim Y W, Oka T, Chacon A, Doran B, Ciappina M, Lewenstein M, Kim S W, et al. 2019 Nat. Commun. 10 3272 [45] Zhou T, Wu W, Zhang J, Yu S and Fang L 2023 Sci. Adv. 9 eadg4391 [46] Bedolla E, Padierna L C and Castaneda-Priego R 2020 J. Phys.: Condens. Matter 33 053001 [47] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431 [48] Carrasquilla J 2020 Adv. Phys.: X 5 1797528 [49] Zahavy T, Dikopoltsev A, Moss D, Haham G I, Cohen O, Mannor S and Segev M 2018 Optica 5 666 [50] White J and Chang Z 2019 Opt. Express 27 4799 [51] Brunner C, Duensing A, Schröder C, Mittermair M, Golkov V, Pollanka M, Cremers D and Kienberger R 2022 Opt. Express 30 15669 [52] Zhao X, Wang S J, Yu W W, Wei H, Wei C, Wang B, Chen J and Lin C D 2020 Phys. Rev. Appl. 13 034043 [53] Zhao X, Wei H, Wu Y and Lin C D 2017 Phys. Rev. A 95 043407 [54] Zhao X, Wei H, Wu Y and Lin C D 2017 Phys. Rev. A 95 043407 [55] Zhao Y T, Ma S y, Jiang S C, Yang Y J, Zhao X and Chen J G 2019 Opt. Express 27 34392 [56] Qiao Y, Huo Y, Liang H, Chen J, Liu W, Yang Y and Jiang S 2023 Phys. Rev. B 107 075201 [57] Wu D, Li L, Zhan Y, Huang T, Cui H, Li J, Lan P and Lu P 2022 Phys. Rev. A 105 063101 [58] Vampa G, McDonald C, Orlando G, Klug D, Corkum P and Brabec T 2014 Phys. Rev. Lett. 113 073901 [59] Cao J, Li F, Bai Y, Liu P and Li R 2021 Opt. Express 29 4830 [60] Kolesik M and Moloney J 2023 Phys. Rev. B 108 115433 [61] Vampa G and Brabec T 2017 J. Phys. B: At. Mol. Opt. Phys. 50 083001 [62] Mirjalili S 2019 Stud. Comput. Intell. 780 43 [63] Wang D, Tan D and Liu L 2018 Soft Comput. 22 387 [64] Koessler E and Almomani A 2021 Optim. Eng. 22 1539 [65] Wikmark H, Guo C, Vogelsang J, Smorenburg P W, Coudert-Alteirac H, Lahl J, Peschel J, Rudawski P, Dacasa H, Carlström S, Maclot S, GaardeMB, Johnsson P, Arnold C L and L’Huillier A 2019 Proc. Natl. Acad. Sci. USA 116 4779 [66] Brown G G, Jiménez-Galán A, Silva R E F and Ivanov M 2024 Phys. Rev. Res. 6 043005 [67] Zhao X, Liu J, Jiang S, Chen J, Wang J and Zhang S 2025 Opticaopen: 28225302.v1[physics.atm-clus] [68] Yang S, Liu X, Zhang H, Song X, Zuo R, Meier T and Yang W 2024 Opt. Express 32 15862 [69] Langer F, Hohenleutner M, Schmid C P, Pöllmann C, Nagler P, Korn T, Schüller C, Sherwin M, Huttner U, Steiner J, et al. 2016 Nature 533 225 [70] Jiang S, Chen J, Wei H, Yu C, Lu R and Lin C 2018 Phys. Rev. Lett. 120 253201 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|