INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Improving performance of screening MM/PBSA in protein-ligand interactions via machine learning |
Yuan-Qiang Chen(陈远强)1, Yao Xu(徐耀)2, Yu-Qiang Ma(马余强)2, and Hong-Ming Ding(丁泓铭)1,† |
1 Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China; 2 National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract Accurately estimating protein-ligand binding free energy is crucial for drug design and biophysics, yet remains a challenging task. In this study, we applied the screening molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method in combination with various machine learning techniques to compute the binding free energies of protein-ligand interactions. Our results demonstrate that machine learning outperforms direct screening MM/PBSA calculations in predicting protein-ligand binding free energies. Notably, the random forest (RF) method exhibited the best predictive performance, with a Pearson correlation coefficient ($r_{\rm p}$) of 0.702 and a mean absolute error (MAE) of 1.379 kcal/mol. Furthermore, we analyzed feature importance rankings in the gradient boosting (GB), adaptive boosting (AdaBoost), and RF methods, and found that feature selection significantly impacted predictive performance. In particular, molecular weight (MW) and van der Waals (VDW) energies played a decisive role in the prediction. Overall, this study highlights the potential of combining machine learning methods with screening MM/PBSA for accurately predicting binding free energies in biosystems.
|
Received: 29 September 2024
Revised: 20 October 2024
Accepted manuscript online: 05 November 2024
|
PACS:
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
87.15.-v
|
(Biomolecules: structure and physical properties)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
87.15.kp
|
(Protein-ligand interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12222506, 12347102, 12447164, and 12174184). |
Corresponding Authors:
Hong-Ming Ding
E-mail: dinghm@suda.edu.cn
|
Cite this article:
Yuan-Qiang Chen(陈远强), Yao Xu(徐耀), Yu-Qiang Ma(马余强), and Hong-Ming Ding(丁泓铭) Improving performance of screening MM/PBSA in protein-ligand interactions via machine learning 2025 Chin. Phys. B 34 018701
|
[1] Persch E, Dumele O and Diederich F 2015 Angew. Chem. Int. Ed. 54 3290 [2] Tosstorff A, Cole J C, Bartelt R and Kuhn B 2021 ChemMedChem 16 3428 [3] Janin J 1995 Prog. Biophys. Mol. Biol. 64 145 [4] Steinbrecher T and Labahn A 2010 Curr. Med. Chem. 17 767 [5] Acuner Ozbabacan S E, Gursoy A, Keskin O and Nussinov R 2010 Curr. Opin. Drug Discovery Dev. 13 527 PMID: 20812144 [6] Du X, Li Y, Xia Y L, Ai S M, Liang J, Sang P, Ji X L and Liu S Q 2016 Int. J. Mol. Sci. 17 144 [7] Bartas M, Slychko K, Brázda V, Č erven J, Beaudoin C A, Blundell T L and Pečinka P 2022 Int. J. Mol. Sci. 23 768 [8] Orphanides G and Reinberg D 2002 Cell 108 439 [9] Chaires J B 2008 Annu. Rev. Biophys. 37 135 [10] Yang X, Zhou P, Shen S, Hu Q, Tian C, Xia A, Wang Y, Yang Z, Nan J and Zhou Y 2024 Proc. Natl. Acad. Sci. USA 121 e2401091121 [11] Shivakumar D, Williams J, Wu Y, Damm W, Shelley J and ShermanW 2010 J. Chem. Theory Comput 6 1509 [12] Schreiber G 2002 Curr. Opin. Struct. Biol. 12 41 [13] Hu X and Contini A 2019 J. Chem. Inf. Model. 59 2714 [14] Fu T, Wu X, Xiu Z, Wang J, Yin L and Li G 2013 J. Theor. Comput. Chem. 12 1341003 [15] Wang E, Sun H, Wang J,Wang Z, Liu H, Zhang J Z H and Hou T 2019 Chem. Rev. 119 9478 [16] Wang C, Greene D A, Xiao L, Qi R and Luo R 2018 Front. Mol. Biosci. 4 87 [17] Abel R, Wang L, Harder E D, Berne B J and Friesner R A 2017 Acc. Chem. Res. 50 1625 [18] Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, DahlgrenMK, Greenwood J, Romero D L, Masse C, Knight J L, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley D L, Jorgensen W L, Berne B J, Friesner R A and Abel R 2015 J. Am. Chem. Soc. 137 2695 [19] Homeyer N and Gohlke H 2012 Mol. Inf. 31 114 [20] Wang E, Weng G, Sun H, Du H, Zhu F, Chen F, Wang Z and Hou T 2019 Phys. Chem. Chem. Phys. 21 18958 [21] Sheng Y J, Yin YW, Ma Y Q and Ding H M 2021 J. Chem. Inf. Model. 61 2454 [22] Ding H M, Yin Y W, Sheng Y J and Ma Y Q 2021 Chin. Phys. Lett. 38 018701 [23] Zhu Y X, Sheng Y J, Ma Y Q and Ding H M 2022 J. Phys. Chem. B 126 1700 [24] Chen Y Q, Sheng Y J, Ding H M and Ma Y Q 2022 Chin. Phys. B 31 048701 [25] Yan Z S, Xu Y, Ding H M and Ma Y Q 2022 Chin. Phys. Lett. 39 108701 [26] Zhang C 2012 Ensemble Machine Learning: Methods and Applications (New York: Springer) pp. 167-184 [27] Chen X, Wang K, Chen J, Wu C, Mao J, Song Y, Liu Y, Shao Z and Pu X 2024 Nat. Commun. 15 8130 [28] Zhang Y, Li S, Meng K and Sun S 2024 J. Chem. Inf. Model. 64 1456 [29] Li J, Fu A and Zhang L 2019 Interdiscip. Sci.: Comput. Life Sci. 11 320 [30] Ballester P J and Mitchell J B 2010 Bioinformatics 26 1169 [31] Sato T, Honma T and Yokoyama S 2010 J. Chem. Inf. Model. 50 170 [32] Deng W, Breneman C and Embrechts M J 2004 J. Chem. Inf. Comput. Sci. 44 699 [33] Staszak M, Staszak K, Wieszczycka K, Bajek A, Roszkowski K and Tylkowski B 2022 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 12 e1568 [34] Ellingson S R, Davis B and Allen J 2020 Biochim. Biophys. Acta, Gen. Subj. 1864 129545 [35] S Heck G, O Pintro V, R Pereira R, Mb Levin N and F De Azevedo W 2017 Curr. Med. Chem. 24 2459 [36] Colwell L J 2018 Curr. Opin. Struct. Biol. 49 123 [37] Bitencourt-Ferreira G and De Azevedo W F 2018 Biophys. Chem. 240 63 [38] Su M, Yang Q, Du Y, Feng G, Liu Z, Li Y and Wang R 2018 J. Chem. Inf. Model. 59 895 [39] Rose P W, Beran B, Bi C, Bluhm W F, Dimitropoulos D, Goodsell D S, Prlić A, Quesada M, Quinn G B and Westbrook J D 2010 Nucleic Acids Res. 39 D392 [40] Burley S K, Berman H M, Christie C, Duarte J M, Feng Z, Westbrook J, Young J and Zardecki C 2018 Protein Sci. 27 316 [41] Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 SoftwareX 1 19 [42] Berendsen H J, Van Der Spoel D and Van Drunen R 1995 Comput. Phys. Commun. 91 43 [43] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J C 2005 J. Comput. Chem. 26 1701 [44] Case D A, Aktulga H M, Belfon K, Ben-Shalom I, Brozell S R, Cerutti D S, Cheatham Iii T E, Cruzeiro V W D, Darden T A and Duke R E 2020 Amber 2020 (University of California, San Francisco) [45] Jakalian A, Bush B L, Jack D B and Bayly C I 2000 J. Comput. Chem. 21 132 [46] Jakalian A, Jack D B and Bayly C I 2002 J. Comput. Chem. 23 1623 [47] Wang J, Wolf R M, Caldwell J W, Kollman P A and Case D A 2004 J. Comput. Chem. 25 1157 [48] Maier J A, Martinez C, Kasavajhala K, Wickstrom L, Hauser K E and Simmerling C 2015 J. Chem. Theory Comput. 11 3696 [49] Jorgensen W L and Madura J D 1983 J. Am. Chem. Soc. 105 1407 [50] Hess B, Bekker H, Berendsen H J and Fraaije J G 1997 J. Comput. Chem. 18 1463 [51] Zhou R, Harder E, Xu H and Berne B 2001 J. Chem. Phys. 115 2348 [52] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577 [53] Sun H, Duan L, Chen F, Liu H, Wang Z, Pan P, Zhu F, Zhang J Z and Hou T 2018 Phys. Chem. Chem. Phys. 20 14450 [54] Genheden S and Ryde U 2015 Expert Opin. Drug Discovery 10 449 [55] Rastelli G, Rio A D, Degliesposti G and Sgobba M 2010 J. Comput. Chem. 31 797 [56] Sun H, Li Y, Tian S, Xu L and Hou T 2014 Phys. Chem. Chem. Phys. 16 16719 [57] Chen F, Sun H, Wang J, Zhu F, Liu H, Wang Z, Lei T, Li Y and Hou T 2018 Rna 24 1183 [58] https://jerkwin.github.io/gmxtool [59] Chen Y Q, Sheng Y J, Ma Y Q and Ding HM2022 Phys. Chem. Chem. Phys. 24 14339 [60] Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A, Thirion B and Varoquaux G 2014 Front. Neuroinform. 8 71792 [61] Genheden S and Ryde U 2011 J. Chem. Theory Comput. 7 3768 [62] He X, Man V H, Ji B, Xie X Q and Wang J 2019 J. Comput.-Aided Mol. Des. 33 105 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|