Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 016101    DOI: 10.1088/1674-1056/ad8ec8
Special Issue: Featured Column — DATA PAPER
DATA PAPER Prev   Next  

Database of ternary amorphous alloys based on machine learning

Xuhe Gong(巩旭菏)1,2, Ran Li(李然)1,†, Ruijuan Xiao(肖睿娟)2,‡, Tao Zhang(张涛)1, and Hong Li(李泓)2
1 School of Materials Science and Engineering, Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The unique long-range disordered atomic arrangement inherent in amorphous materials endows them with a range of superior properties, rendering them highly promising for applications in catalysis, medicine, and battery technology, among other fields. Since not all materials can be synthesized into an amorphous structure, the composition design of amorphous materials holds significant importance. Machine learning offers a valuable alternative to traditional "trial-and-error" methods by predicting properties through experimental data, thus providing efficient guidance in material design. In this study, we develop a machine learning workflow to predict the critical casting diameter, glass transition temperature, and Young's modulus for 45 ternary reported amorphous alloy systems. The predicted results have been organized into a database, enabling direct retrieval of predicted values based on compositional information. Furthermore, the applications of high glass forming ability region screening for specified system, multi-property target system screening and high glass forming ability region search through iteration are also demonstrated. By utilizing machine learning predictions, researchers can effectively narrow the experimental scope and expedite the exploration of compositions.
Keywords:  amorphous alloys      machine learning      database  
Received:  15 September 2024      Revised:  22 October 2024      Accepted manuscript online:  05 November 2024
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  71.23.Cq (Amorphous semiconductors, metallic glasses, glasses)  
Fund: Project supported by funding from the National Natural Science Foundation of China (Grant Nos. 52172258, 52473227 and 52171150) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB0500200).
Corresponding Authors:  Ran Li, Ruijuan Xiao     E-mail:  liran@buaa.edu.cn;rjxiao@aphy.iphy.ac.cn

Cite this article: 

Xuhe Gong(巩旭菏), Ran Li(李然), Ruijuan Xiao(肖睿娟), Tao Zhang(张涛), and Hong Li(李泓) Database of ternary amorphous alloys based on machine learning 2025 Chin. Phys. B 34 016101

[1] Yu X, Gong X, Qiao H, Liu X, Ma C, Xiao R, Li R and Zhang T 2024 Small Methods 8 2400793
[2] Li X, Cai W, Li D S, Xu J, Tao H and Liu B 2021 Nano Research 16 4277
[3] Meagher P, O’cearbhaill E D, Byrne J H and Browne D J 2016 Adv. Mater. 28 5755
[4] Li H F and Zheng Y F 2016 Acta Biomater 36 1
[5] Wu S, Xiao R, Li H and Chen L 2022 Inorganics 10 45
[6] Zhang S, Zhao F, Chen J, Fu J, Luo J, Alahakoon S H, Chang L Y, Feng R, Shakouri M, Liang J, Zhao Y, Li X, He L, Huang Y, Sham T K and Sun X 2023 Nat. Commun. 14 3780
[7] Dai T, Wu S, Lu Y, Yang Y, Liu Y, Chang C, Rong X, Xiao R, Zhao J, Liu Y, Wang W, Chen L and Hu Y S 2023 Nature Energy 8 1221
[8] Hu L, Wang J, Wang K, Gu Z, Xi Z, Li H, Chen F, Wang Y, Li Z and Ma C 2023 Nat. Commun. 14 3807
[9] Lu Z P and Liu C T 2002 Acta Materialia 50 3501
[10] Du X H, Huang J C, Liu C T and Lu Z P 2007 J. Appl. Phys. 101 086108
[11] Lu Z P, Tan H, Li Y and Ng S C 2000 Scripta Materialia 42 667
[12] Shen Z H, Liu H X, Shen Y, Hu J M, Chen L Q and Nan C W 2022 Interdisciplinary Materials 1 175
[13] Liu Y, Niu C, Wang Z, Gan Y, Zhu Y, Sun S and Shen T 2020 Journal of Materials Science & Technology 57 113
[14] Wei J, Chu X, Sun X Y, Xu K, Deng H X, Chen J, Wei Z and Lei M 2019 InfoMat 1 338
[15] Wu Y, Xu B, Sun Y and Guan P 2021 Chin. Phys. B 30 057103
[16] Zhao S, Jiang B, Song K, Liu X,WangW, Si D, Zhang J, Chen X, Zhou C, Liu P, Chen D, Zhang Z, Ramasamy P, Tang J, Lv W, Prashanth K G, Şopu D and Eckert J 2024 Materials & Design 238 112634
[17] Liu X W, Long Z L, Zhang W and Yang L M 2022 J. Alloys Compd. 901 163606
[18] Liu G, Sohn S, O’hern C S, Gilbert A C and Schroers J 2024 Acta Materialia 265 119590
[19] Jeon J, Kim G, Seo N, Choi H, Kim H J, Lee M H, Lim H K, Son S B and Lee S J 2022 Journal of Materials Research and Technology 16 129
[20] Xiong J, Shi S Q and Zhang T Y 2020 Materials & Design 187 108378
[21] Gong X, Bi J, Liu X, Li R, Xiao R, Zhang T and Li H 2024 Phys. Rev. Mater. 8 055602
[22] Wang W H 2012 Progress in Materials Science 57 487
[23] Ward L, Dunn A, Faghaninia A, Zimmermann N E R, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson K A, Snyder G J, Foster I and Jain A 2018 Computational Materials Science 152 60
[24] James B, Daniel Y, David G C and David D C 2013 Proceedings of the 30th International Conference on Machine Learning, June 16-21, 2013, Atlanta, USA, p. 115
[25] Bi J, Liu X, Zhao H, Li R and Zhang T 2024 Surface and Coatings Technology 478 130421
[26] You D, Zhang H, Ganorkar S, Kim T, Schroers J, Vlassak J J and Lee D 2022 Acta Materialia 231 117861
[27] Li M X, Zhao S F, Lu Z, Hirata A, Wen P, Bai H Y, Chen M, Schroers J, Liu Y and Wang W H 2019 Nature 569 99
[1] Effect of Co substitution for Fe on microstructure and magnetic properties of FeNiSiBCuNb alloy ribbons
Wen-Feng Liu(刘文峰), Ya-Ting Yuan(袁雅婷), Chang-Jiang Yu(于长江), Shu-Jie Kang(康树杰), Qian-Ke Zhu(朱乾科), Zhe Chen(陈哲), Ke-Wei Zhang(张克维), and Min-Gang Zhang(张敏刚). Chin. Phys. B, 2025, 34(2): 027502.
[2] Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution:A machine learning interatomic potential-assisted investigation
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(2): 028201.
[3] Classifying extended, localized and critical states in quasiperiodic lattices via unsupervised learning
Bohan Zheng(郑博涵), Siyu Zhu(朱思宇), Xingping Zhou(周兴平), and Tong Liu(刘通). Chin. Phys. B, 2025, 34(1): 017103.
[4] Improving performance of screening MM/PBSA in protein-ligand interactions via machine learning
Yuan-Qiang Chen(陈远强), Yao Xu(徐耀), Yu-Qiang Ma(马余强), and Hong-Ming Ding(丁泓铭). Chin. Phys. B, 2025, 34(1): 018701.
[5] Variational data encoding and correlations in quantum-enhanced machine learning
Ming-Hao Wang(王明浩) and Hua Lü(吕桦). Chin. Phys. B, 2024, 33(9): 090307.
[6] Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance
Rui Xin(辛睿), Yaqi Wang(王亚祺), Ze Fang(房泽), Fengji Zheng(郑凤基), Wen Gao(高雯), Dashi Fu(付大石), Guoqing Shi(史国庆), Jian-Yi Liu(刘建一), and Yongcheng Zhang(张永成). Chin. Phys. B, 2024, 33(8): 087701.
[7] Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source
Menghui Mao(毛梦辉), Wei Zhou(周唯), Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(8): 080301.
[8] A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system
Bin Liu(刘斌) and Yixi Wang(王译浠). Chin. Phys. B, 2024, 33(8): 084401.
[9] Physical information-enhanced graph neural network for predicting phase separation
Yaqiang Zhang(张亚强), Xuwen Wang(王煦文), Yanan Wang(王雅楠), and Wen Zheng(郑文). Chin. Phys. B, 2024, 33(7): 070702.
[10] Prediction of impurity spectrum function by deep learning algorithm
Ting Liu(刘婷), Rong-Sheng Han(韩榕生), and Liang Chen(陈亮). Chin. Phys. B, 2024, 33(5): 057102.
[11] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[12] Computing large deviation prefactors of stochastic dynamical systems based on machine learning
Yang Li(李扬), Shenglan Yuan(袁胜兰), Linghongzhi Lu(陆凌宏志), and Xianbin Liu(刘先斌). Chin. Phys. B, 2024, 33(4): 040501.
[13] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[14] Recent advances in protein conformation sampling by combining machine learning with molecular simulation
Yiming Tang(唐一鸣), Zhongyuan Yang(杨中元), Yifei Yao(姚逸飞), Yun Zhou(周运), Yuan Tan(谈圆),Zichao Wang(王子超), Tong Pan(潘瞳), Rui Xiong(熊瑞), Junli Sun(孙俊力), and Guanghong Wei(韦广红). Chin. Phys. B, 2024, 33(3): 030701.
[15] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
No Suggested Reading articles found!