Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094203    DOI: 10.1088/1674-1056/adee00
Special Issue: Featured Column — COMPUTATIONAL PROGRAMS FOR PHYSICS
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

3D-GTDSE: A GPU-based code for solving 3D-TDSE in Cartesian coordinates

Ke Peng(彭科)1, Aihua Liu(刘爱华)2,†, Jun Wang(王俊)2,‡, and Xi Zhao(赵曦)1,§
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China;
2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  We present a graphics processing units (GPU) parallelization based three-dimensional time-dependent Schrödinger equation (3D-TDSE) code to simulate the interaction between single-active-electron atom/molecule and arbitrary types of laser pulses with either velocity gauge or length gauge in Cartesian coordinates. Split-operator method combined with fast Fourier transforms (FFT) is used to perform the time evolution. Sample applications in different scenarios, such as stationary state energies, photon ionization spectra, attosecond clocks, and high-order harmonic generation (HHG), are given for the hydrogen atom. Repeatable results can be obtained with the benchmark program PCTDSE, which is a 3D-TDSE Fortran solver parallelized using message passing interface (MPI) library. With the help of GPU acceleration and vectorization strategy, our code running on a single NVIDIA 3090 RTX GPU can achieve about 10 times faster computation speed than PCTDSE running on a 144 Intel Xeon CPU cores server with the same accuracy. In addition, 3D-GTDSE can also be modified slightly to simulate non-adiabatic dynamics involving the coupling of nuclear and electronic wave packets, as well as pure nuclear wave packet dynamics in the presence of strong laser fields within 3 dimensions. Additionally, we have also discussed the limitations and shortcomings of our code in utilizing GPU memory. The 3D-GTDSE code provides an alternative tool for studying the ultrafast nonlinear dynamics under strong laser fields.
Keywords:  GPU parallelization      high-order harmonic generation (HHG)      time-dependent Schrödinger equation (TDSE)      wave packet dynamics  
Received:  24 April 2025      Revised:  25 June 2025      Accepted manuscript online:  10 July 2025
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: This work was supported by the GHfund A (Grant No. ghfund202407013663), the Fundamental Research Funds for the Central Universities (Grant No. GK202207012), Shaanxi Province (Grant No. QCYRCXM-2022-241), the National Key Research and Development Program of China (Grant No. 2022YFE0134200), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2025A1515011117), the Natural Science Foundation of Jilin Province (Grant No. 20220101016JC), and the National Natural Science Foundation of China (Grant Nos. 12374238, 11934004, and 11974230).
Corresponding Authors:  Aihua Liu, Jun Wang, Xi Zhao     E-mail:  aihualiu@jlu.edu.cn;wangjun86@jlu.edu.cn;zhaoxi719@snnu.edu.cn

Cite this article: 

Ke Peng(彭科), Aihua Liu(刘爱华), Jun Wang(王俊), and Xi Zhao(赵曦) 3D-GTDSE: A GPU-based code for solving 3D-TDSE in Cartesian coordinates 2025 Chin. Phys. B 34 094203

[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[2] Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A,Westerwalbesloh T, Kleineberg U, Heinzmann U and Krausz F 2002 Nature 419 803
[3] Goulielmakis E, Yakovlev V S, Cavalieri A L, Uiberacker M, Pervak V, Apolonski A, Kienberger R, Kleineberg U and Krausz F 2007 Science 317 769
[4] Uiberacker M, Uphues T, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schroeder H and Lezius M 2007 Nature 446 627
[5] Cui H F and Miao X Y 2020 Chin. Phys. B 29 074203
[6] Grundmann S, Kircher M, Vela-Perez I, Nalin G and Doerner R 2020 Phys. Rev. Lett. 124 233201
[7] Ivanov I 2014 Phys. Rev. A 90 013418
[8] Higuet J, Ruf H, Thiré N, Cireasa R, Constant E, Cormier E, Descamps D, Mével E, Petit S, Pons B, et al. 2011 Phys. Rev. A 83 053401
[9] Agostini P and DiMauro L F 2004 Rep. Prog. Phys. 67 813
[10] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, et al. 2006 Science 314 443
[11] Carrera J J, Tong X M and Chu S I 2006 Phys. Rev. A 74 023404
[12] Aubert B, Barate R, Boutigny D, Couderc F, Gaillard J M, Hicheur A, Karyotakis Y, Lees J, Tisserand V, Zghiche A, et al. 2004 Phys. Rev. D 69 111104
[13] Zhang L and Simos T E 2016 Adv. Math. Phys. 2016 8181927
[14] Liu N and Jiang W 2018 Adv. Comput. Math. 44 1235
[15] Awasthi M, Vanne Y V, Saenz A, Castro A and Decleva P 2008 Phys. Rev. A 77 063403
[16] Saenz A, Awasthi M, Vanne Y, Castro A and Decleva P 2008 APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts Vol. 39 pp. OPO-50
[17] Schild A and Gross E 2017 Phys. Rev. Lett. 118 163202
[18] Nisoli M, Decleva P, Calegari F, Palacios A and Martín F 2017 Chem. Rev. 117 10760
[19] Born M 1927 Ann. Phys 84 457
[20] Walker D W and Dongarra J J 1996 Supercomputer 12 56
[21] Chandra R, Dagum L, Kohr D, Maydan D, McDonald J and Menon R 2001 Parallel Programming in OpenMP (Morgan Kaufmann), ISBN: 1558606718
[22] Mosert V and Bauer D 2016 Comput. Phys. Commun. 207 452
[23] Zhang Z H, Li Y, Mao Y J and He F 2023 Comput. Phys. Commun. 290 108787
[24] Kozicki J 2023 Comput. Phys. Commun 291 108839
[25] Scrinzi A 2022 Comput. Phys. Commun. 270 108146
[26] Brown A C, Armstrong G S, Benda J, Clarke D D, Wragg J, Hamilton K R, Mašín Z, Gorfinkiel J D and van der Hart H W 2020 Comput. Phys. Commun. 250 107062
[27] Patchkovskii S and Muller H 2016 Comput. Phys. Commun. 199 153
[28] Forembski A and Nikolopoulos L A 2023 Comput. Phys. Commun. 291 108820
[29] Farber R 2011 CUDA application design and development (Morgan Kaufmann)
[30] Munshi A 2009 2009 IEEE Hot Chips 21 Symposium (HCS) (IEEE) pp. 1-314
[31] Wienke S, Springer P, Terboven C and Mey D 2012 Euro-Par 2012 Parallel Processing: 18th International Conference, Rhodes Island, Greece, pp. 859-870
[32] Zhao X, Zhang G, Bai T, Wang J and Yu W W 2021 Chin. Phys. B 30 073201
[33] Broin C O and Nikolopoulos L 2014 Comput. Phys. Commun. 185 1791
[34] Dziubak T and Matulewski J 2012 Comput. Phys. Commun. 183 800
[35] Chen H, McMahon J M, Ratner M A and Schatz G C 2010 J. Phys. Chem. C 114 14384
[36] Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Comput. Phys. Commun. 151 60
[37] Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U and Rubio A 2006 Phys. Status. Solidi. (b) 243 2465
[38] Dinh P M, Vincendon M, Coppens F, Suraud E and Reinhard P G 2022 Comput. Phys. Commun. 270 108155
[39] Milosevic N, Corkum P B and Brabec T 2004 Phys. Rev. Lett. 92 013002
[40] He P L, Lao D and He F 2017 Phys. Rev. Lett. 118 163203
[41] Fu Y, Zeng J and Yuan J 2017 Comput. Phys. Commun. 210 181
[42] Bandrauk A D and Shen H 1991 Chem. Phys. Lett. 176 428
[43] Gerlind P, Daniel P, Gabriele S and Manfred T 2018 Numerical Fourier Analysis (Springer International Publishing) pp. 231-303
[44] Feit M, Fleck Jr J and Steiger A 1982 J. Comput. Phys. 47 412
[45] Lehtovaara L, Toivanen J and Eloranta J 2007 J. Comput. Phys. 221 148
[46] Han Y C and Madsen L B 2010 Phys. Rev. A 81 063430
[47] Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M and Smirnova O 2015 Nat. Phys. 11 503
[48] Grum-Grzhimailo A N, Abeln B, Bartschat K, Weflen D and Urness T 2010 Phys. Rev. A 81 043408
[49] Flügge S and Franzen W 2012 Practical quantum mechanics (Springer Science & Business Media)
[50] Bressanini D, Mella M and Morosi G 1997 Chem. Phys. Lett. 272 370
[1] Influence of excited states in high-order harmonic generation at intense mid-infrared field
Yan Fang(方言), Da-Wei Tian(田大纬), Yue Cao(曹玥), Xiao-Lei Hao(郝小雷), and Zheng Shu(舒正). Chin. Phys. B, 2025, 34(10): 103201.
No Suggested Reading articles found!