|
Special Issue:
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
|
| SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems |
Prev
Next
|
|
|
High-order harmonic generation of methane in an elliptically polarized field |
| Shu-Shan Zhou(周书山)1, Yu-Long Li(李玉龙)2, Zhi-Xue Zhao(赵志学)1, Man Xing(幸满)3, Nan Xu(许楠)1, Hao Wang(王浩)1, Jun Wang(王俊)3, Xi Zhao(赵曦)4, and Mu-Hong Hu(胡木宏)1,† |
1 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China; 2 Beijing Institute of Space Launch Technology, Beijing 100076, China; 3 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 4 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China |
|
|
|
|
Abstract We performed real-time and real-space numerical simulations of high-order harmonic generation in the three-dimensional structured molecule methane (CH$_{4}$) using time-dependent density functional theory. By irradiating the methane molecule with an elliptically polarized laser pulse polarized in the \( x \)-\( y \) plane, we observed significant even-order harmonic emission in the \( z \)-direction. By analyzing the electron dynamics in the electric field and the multi-orbital effects of the molecule, we revealed that electron recombination near specific atoms in methane is the primary source of high-order harmonic generation in the \( z \)-direction. Furthermore, we identified the dominant molecular orbitals responsible for the enhancement of harmonics in this direction and demonstrated the critical role played by multi-orbital effects in this process.
|
Received: 08 March 2025
Revised: 09 April 2025
Accepted manuscript online: 11 April 2025
|
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
| |
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
| |
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204214), the National Key Research and Development Program of China (Grant No. 2022YFE0134200), the Fundamental Research Funds for the Central Universities (Grant No. GK202207012), QCYRCXM-2022-241, and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2025A1515011117). |
Corresponding Authors:
Mu-Hong Hu
E-mail: humuhong@163.com
|
Cite this article:
Shu-Shan Zhou(周书山), Yu-Long Li(李玉龙), Zhi-Xue Zhao(赵志学), Man Xing(幸满), Nan Xu(许楠), Hao Wang(王浩), Jun Wang(王俊), Xi Zhao(赵曦), and Mu-Hong Hu(胡木宏) High-order harmonic generation of methane in an elliptically polarized field 2025 Chin. Phys. B 34 063202
|
[1] Wang J, Gao S N, Liu A H, He L H and Zhao X 2025 Sci. Rep. 15 117 [2] Chen J Q, JiangWL, Qiao Y, Yang Y J and Chen J G 2025 Chin. Phys. Lett. 42 013201 [3] Yuan H Y, Yang Y J, Guo F M,Wang J and Cui Z W 2022 Opt. Express 30 19745 [4] Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389 [5] l’Huillier A, Lompre L A, Mainfray G and Manus C 1983 Phys. Rev. A 27 2503 [6] Zhou S S, Lan W D, Chen J G, Wang J, Guo F M and Yang Y J 2022 Phys. Rev. A 106 023510 [7] Qiao Y, Huo Y Q, Jiang S C, Yang Y J and Chen J G 2022 Opt. Express 30 9971 [8] Wang J, Zhang C, Li Y and Ding Y 2023 Nat. Sci. Ed. 50 154 [9] Zhou S S, Wang H, Hu M H, Sun Y B and Zhao X 2025 Symmetry 17 1 [10] Qiao Y, Chen J Q, Zhou S S, Chen J G, Jiang S C and Yang Y J 2024 Chin. Phys. Lett. 41 014205 [11] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [12] Qiao Y and Zhang, S S, Jiang W L, Guo F M, Wang J, Chen J G and Yang Y J 2025 Phys. Rev. A 111 013501 [13] Jiang S C, Chen J G,Wei H, Yu C, Lu R F and Lin C D 2018 Phys. Rev. Lett. 120 253201 [14] Chen Y J, Fu L B and Liu J 2013 Phys. Rev. Lett. 111 073902 [15] Peng Y G, Wu T, Yuan G L, Chi L H, Jiang S C, Dorfman K, Yu C and Lu R F 2023 Sci. Adv. 9 eadd6810 [16] Hu H T, Li N, Liu P, Li R X and Xu Z Z 2017 Phys. Rev. Lett. 119 173201 [17] Li Y, Zhu X, Zhang Q, Qin M and Lu P 2013 Opt. Express 21 4896 [18] Möller M, Cheng Y, Khan S D, Zhao B, Zhao K, Chini M, Paulus G G and Chang Z 2012 Phys. Rev. A 86 011401 [19] Strelkov V V 2006 Phys. Rev. A 74 013405 [20] Strelkov V V, Gonoskov A A, Gonoskov I A and Ryabikin M Yu 2011 Phys. Rev. Lett. 107 043902 [21] Ivanov M, Brabec T and Burnett N 1996 Phys. Rev. A 54 742 [22] Dudovich N, Levesque J, Smirnova O, Zeidler D, Comtois D, IvanovM Yu, Villeneuve D M and Corkum P B 2006 Phys. Rev. Lett. 97 253903 [23] Strelkov V V, Khokhlova M A, Gonoskov A A, Gonoskov I A and Ryabikin M Yu 2012 Phys. Rev. A 86 013404 [24] Hu J, Wang Y C, Jing Q S, Jiang W, Wang G W, Zhao Y W, Xiao B, Liang H J and Ma R 2024 Chin. Phys. B 33 054208 [25] Carlo A, Raffaele V, Heesel E, Springate E, Marangos J P, Caterina V, Enrico B, Francesca C, Giuseppe S, Salvatore S, et al. 2006 Phys. Rev. A 73 043411 [26] Serguei P 2009 Phys. Rev. Lett. 102 253602 [27] Bruun M C and Bojer M L 2007 Phys. Rev. A 76 043419 [28] Irani E, Sadighi-Bonabi R and Anvari A 2015 J. Mol. Struct. 1079 454 [29] Serguei P and Schuurman M S 2017 Phys. Rev. A 96 053405 [30] Koushki A M and Sarikhani S 2021 Chem. Phys. 541 111020 [31] Tancogne-Dejean N, Mucke O D, Kartner F X and Rubio A 2017 Phys. Rev. Lett. 118 087403 [32] Zhou S S, Guo J, Chen J G and Yang Y J 2017 J. At. Mol. Sci. 8 18 [33] Monfared M, Irani E and Sadighi-Bonabi R 2018 J. Chem. Phys. 148 234303 [34] Wardlow A and Dundas D 2016 Phys. Rev. A 93 023428 [35] Klemke N, Tancogne-Dejean N, Rossi G M, Yang Y, Scheiba F, Mainz R E, Sciacca G D, Rubio A, Krtner F X and Mücke O D 2019 Nat. Commun. 10 1319 [36] Tancogne-Dejean N, Mücke O D, Krtner F X and Rubio A 2017 Nat. Commun. 8 745 [37] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 [38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [39] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [40] Kleinman L and Bylander D M 1982 Phys. Rev. Lett. 48 1425 [41] Castro A, Marques M A and Rubio A 2004 J. Chem. Phys. 121 3425 [42] De Giovannini U, Larsen A H and Rubio A 2015 Eur. Phys. J. B 88 56 [43] Castro A, Rubio A and Gross E K U 2015 Eur. Phys. J. B 88 191 [44] Tavernelli I, Rhrig U F and Rothlisberger U 2005 Mol. Phys. 103 963 [45] Marques M A L, Castro A, Bertsch G F and Rubio A 2003 Phys. Commun. 151 60 [46] Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U and Rubio A 2006 Phys. Status Solidi B 243 2465 [47] Andrade X, Strubbe D, Giovannini U D, Larsen A H, Oliveira M J, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J, Stella L, Nogueira F, Aspuru-Guzik A, Castro A, Marques M A and Rubio A 2015 Phys. Chem. Chem. Phys. 17 31371 [48] Madsen C B and Madsen L B 2007 Phys. Rev. A 76 043419 [49] Penka E F, Couture-Bienvenue E and Bandrauk A D 2005 Phys. Rev. A 89 023414 [50] Burnus T, Marques M A L and Gross E K U 2014 Phys. Rev. A 71 010501 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|