Special Issue:
Featured Column — DATA PAPER
|
|
|
Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance |
Rui Xin(辛睿)1, Yaqi Wang(王亚祺)1, Ze Fang(房泽)1, Fengji Zheng(郑凤基)1, Wen Gao(高雯)1, Dashi Fu(付大石)1, Guoqing Shi(史国庆)1, Jian-Yi Liu(刘建一)1,2,†, and Yongcheng Zhang(张永成)1,‡ |
1 College of Physics, Center for Marine Observation and Communications, National Demonstration Center for Experimental Applied Physics Education, Qingdao University, Qingdao 266071, China; 2 Centre for Theoretical and Computational Physics, College of Physics, Qingdao University, Qingdao 266071, China |
|
|
Abstract Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-PbTiO$_{3}$ (PMN-PT) piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications. Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients. The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics, which makes it not easy to extend the sample data by additional experimental or theoretical calculations. In this paper, a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components. In contrast to all-data-driven model, physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties. Based on the model outputs, the positions of morphotropic phase boundary (MPB) with different Sm doping amounts are explored. We also find the components with the best piezoelectric property and comprehensive performance. Moreover, we set up a database according to the obtained results, through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.
|
Received: 03 February 2024
Revised: 23 May 2024
Accepted manuscript online:
|
PACS:
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
77.84.Cg
|
(PZT ceramics and other titanates)
|
|
77.90.+k
|
(Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)
|
|
77.80.Jk
|
(Relaxor ferroelectrics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52272116 and 12002400), the Natural Science Foundation of Shandong Province (Grant No. ZR2021ME096), and the Youth Innovation Team Project of Shandong Provincial Education Department (Grant No. 2019KJJ012). |
Corresponding Authors:
Jian-Yi Liu, Yongcheng Zhang
E-mail: jianyi_liu@qdu.edu.cn;qdzhyc@qdu.edu.cn
|
Cite this article:
Rui Xin(辛睿), Yaqi Wang(王亚祺), Ze Fang(房泽), Fengji Zheng(郑凤基), Wen Gao(高雯), Dashi Fu(付大石), Guoqing Shi(史国庆), Jian-Yi Liu(刘建一), and Yongcheng Zhang(张永成) Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance 2024 Chin. Phys. B 33 087701
|
[1] Cao Y S, Li J R, Sha A M, Liu Z Z, Zhang F and Li X Z 2022 J. Cleaner Prod. 369 133287 [2] Lu J L, Hu S M, Li W R, Wang X F, Mo X W, Gong X T, Liu H, Luo W, Dong W, Sima C, Wang Y J, Yang G, Luo J T, Jiang S L, Shi Z J and Zhang G Z 2022 ACS Nano 16 3744 [3] Christensen-Jeffries K, Couture O, Dayton P A, Eldar Y C, Hynynen K, Kiessling F, O’Reilly M, Pinton G F, Schmitz G, Tang M X, Tanter M and Van S R J G 2020 Ultrasound Med. Biol. 46 865 [4] Trolier-McKinstry S, Zhang S J, Bell A J and Tan X L 2018 Annu. Rev. Mater. Res. 48 191 [5] Wang J J, Wang S H, Li X, Li L, Liu Z, Zhang J and Wang Y J 2023 J. Adv. Ceram. 12 792 [6] Wang F F, Wang H N, Yang Q S, Zhang Z X and Yan K 2021 Ceram. Int. 47 15005 [7] Yang S, Wang M W, Wang L, Liu J F, Wu J, Li J L, Gao X Y, Chang Y F, Xu Z and Li F 2022 J. Am. Ceram. Soc. 105 3322 [8] Li T Y, Liu C, Shi P, Liu X, Kang R R, Long C B, Wu M, Cheng S D, Mi S B, Xia Y H, Li L L, Wang D and Lou X J 2022 Adv. Funct. Mater. 32 2202307 [9] Li F, Lin D B, Chen Z B, Cheng Z X, Wang J L, Li C C, Xu Z, Huang Q W, Liao X Z, Chen L Q, Shrout T R and Zhang S J 2018 Nat. Mater. 17 349 [10] Guo Q H, Hou L T, Li F, Xia F Q, Wang P B, Hao H, Sun H J, Liu H X and Zhang S J 2019 J. Am. Ceram. Soc. 102 7428 [11] Fang Z, Tian X, Zheng F J, Jiang X D, Ye W N, Qin Y L, Wang X X and Zhang Y C 2022 Ceram. Int. 48 7550 [12] Xu B, Kang G Z, Kan Q H, Yu C and Xie X 2020 Int. J. Mech. Sci. 168 105303 [13] Bui T Q and Hu X F 2021 Eng. Fract. Mech. 248 107705 [14] Chen L Q and Zhao Y H 2022 Prog. Mater. Sci. 124 100868 [15] Li F, Cabral M J, Xu B, Cheng Z X, Dickey E C, LeBeau J M, Wang J L, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R and Zhang S J 2019 Science 364 264 [16] Batra R, Song L and Ramprasad R 2021 Nat. Rev. Mater. 6 655 [17] Yuan R H, Xue D Q, Xu Y Y, Xue D Z and Li J S 2022 J. Alloys Compd. 908 164468 [18] Yuan R H, Xue D Z, Xue D Q, Zhou Y M, Ding X D, Sun J and Lookman T 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 394 [19] Yuan R H, Tian Y, Xue D Z, Xue D Q, Zhou Y M, Ding X D, Sun J and Lookman T 2019 Adv. Sci. 6 1901395 [20] Xu P C, Ji X B, Li M J and Lu W C 2023 npj Comput. Mater. 9 42 [21] Childs C M and Washburn N R 2019 MRS Commun. 9 806 [22] Xue T J, Gan Z T, Liao S H and Cao J 2022 npj Comput. Mater. 8 201 [23] Li C C, Xu B, Lin D B, Zhang S J, Bellaiche L, Shrout T R and Li F 2020 Phys. Rev. B 101 140102 [24] Zheng F J, Tian X, Fang Z, Lin J F, Lu Y, Gao W, Xin R, Fu D S, Qi Y, Ma Z Z, Ye W N, Qin Y L, Wang X X and Zhang Y C 2023 ACS Appl. Mater. Interfaces 15 7053 [25] Li L, Cheng J S, Cheng Y Y, Han T, Liu Y, Zhou Y, Zhao G H, Zhao Y, Xiong C X, Dong L J and Wang Q 2021 Adv. Mater. 33 2102392 [26] Shin W, Yim J, Bae J, Lee J, Hong S, Kim J, Jeong Y, Kwon D, Koo R, Jung G, Han C, Kim J, Park B, Kwon D and Lee J 2022 Mater. Horiz. 9 1623 [27] Yang L Y, Huang H B, Xi Z Z, Zheng L M, Xu S Q, Tian G, Zhai Y Z, Guo F F, Kong L P, Wang Y G, Lü W M, Yuan L, Zhao M L, Zheng H W and Liu G 2022 Nat. Commun. 13 2444 [28] Qiu C R, Wang B, Zhang N, Zhang S J, Liu J F, Walker D, Wang Y, Tian H, Shrout T R, Xu Z, Chen L Q and Li F 2020 Nature 577 350 [29] Li J L, Qu W B, Daniels J, et al. 2023 Science 380 87 [30] Apicella A, Donnarumma F, Isgr‘o F and Prevete R 2021 Neural Networks 138 14 [31] Zhang X Y and Liu C A 2023 J. Econom. 235 280 [32] Bejani M M and Ghatee M 2021 Artif. Intell. Rev. 54 6391 [33] Plonsky L and Ghanbar H 2018 Mod. Lang. J. 102 713 [34] Karunasingha D S K 2022 Inf. Sci. 585 609 [35] Hodson T O 2022 Geosci. Model. Dev. 15 5481 [36] Mansournia M A, Waters R, Nazemipour M, Bland M and Altman D G 2021 Global Epidemiol. 3 100045 [37] Gerke O 2020 Diagnostics 10 334 [38] Korkmaz M Ç, Chesneau C and Korkmaz Z S 2021 Symmetry 13 117 [39] Dash S, Pradhan D K, Kumari S, Ravikant, Rahaman M M, Cazorla C, Brajesh K, Kumar A, Thomas, Rack P D and Pradhan D K 2021 Phys. Rev. B 104 224105 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|