|
Special Issue:
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
|
| SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems |
Prev
Next
|
|
|
Influence of excited states in high-order harmonic generation at intense mid-infrared field |
| Yan Fang(方言), Da-Wei Tian(田大纬), Yue Cao(曹玥), Xiao-Lei Hao(郝小雷), and Zheng Shu(舒正)† |
| State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China |
|
|
|
|
Abstract We present a comprehensive study on the role of various excited states in high-order harmonic generation of hydrogen atoms driven by a long-wavelength (1500 nm) laser field. By numerically solving the time-dependent Schr?dinger equation (TDSE) and performing a time-frequency analysis, we investigate the influence of individual excited states on the harmonic spectrum. Our results reveal that the 2s excited state primarily contributes to the enhancement of high-energy harmonic yields by facilitating long electron trajectories, while the 2p excited state predominantly suppresses harmonic yields in the lower-energy region (20th-50th orders) by altering the contributions of electron trajectories. Our results highlight the critical role of the excited states in the HHG process, even at longer laser wavelengths.
|
Received: 27 March 2025
Revised: 12 May 2025
Accepted manuscript online: 19 May 2025
|
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
| |
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
| Fund: This work was supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi. |
Corresponding Authors:
Zheng Shu
E-mail: zheng_shu@sxu.edu.cn
|
Cite this article:
Yan Fang(方言), Da-Wei Tian(田大纬), Yue Cao(曹玥), Xiao-Lei Hao(郝小雷), and Zheng Shu(舒正) Influence of excited states in high-order harmonic generation at intense mid-infrared field 2025 Chin. Phys. B 34 103201
|
[1] Eckle P, Pfeiffer A, Cirelli C, Staudte A, Dorner R, Muller H, Buttiker M and Keller U 2008 Science 322 1525 [2] Schultze M, Fiess M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y and Mercouris T 2010 Science 328 1658 [3] Taylor D J and Paterson M J 2012 Chem. Phys. 408 1 [4] Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H and Pfeifer T 2013 Science 340 716 [5] Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Anumula S, Frassetto F, Poletto L, Palacios A and Decleva P 2014 Science 346 336 [6] Huppert M, Jordan I, Baykusheva D, Von Conta A and Wörner H J 2016 Phys. Rev. Lett. 117 093001 [7] Teratani T, Mikami Y, Nakamoto N, Suzuki T, Harada Y, Okabayashi K, Hagihara Y, Taniki N, Kohno K and Shibata S 2020 Nature 585 591 [8] Zhou S S, Yang Y J, Yang Y, Suo M Y, Li D Y, Qiao Y, Yuan H Y, Lan W D and Hu M H 2023 Chin. Phys. B 32 013201 [9] Zhai C Y, Wu Y M, Qin L L, Li X, Shi L K, Zhang K, Kang S J, Li Z F, Li Y B, Tang Q B and Yu B H 2023 Chin. Phys. B 32 073301 [10] Qiao Y, Chen J Q, Zhou S S, Chen J G, Jiang S C and Yang Y J 2024 Chin. Phys. Lett. 41 014205 [11] Ferray M, L’Huillier A, Li X, Lompre L, Mainfray G and Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31 [12] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [13] Lewenstein M, Balcou P, Ivanov M Y, L’huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [14] Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903 [15] Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C and Velotta R 2005 Phys. Rev. Lett. 95 153902 [16] Shiner A D, Schmidt B E, Trallero-Herrero C, Wörner H J, Patchkovskii S, Corkum P B, Kieffer J C, Légaré F and Villeneuve D M 2011 Nat. Phys. 7 464 [17] Figueira de Morisson Faria C, Dörr M and Sandner W 1998 Phys. Rev. A 58 2990 [18] Carrera J J, Tong X M and Chu S I 2006 Phys. Rev. A 74 023404 [19] Milošević D B 2006 J. Opt. Soc. Am. B 23 308 [20] Kraus P M, Zhang S B, Gijsbertsen A, Lucchese R R, Rohringer N and Wörner H J 2013 Phys. Rev. Lett. 111 243005 [21] Baykusheva D, Kraus P M, Zhang S B, Rohringer N and Wörner H J 2014 Faraday Discuss. 171 113 [22] Telnov D A and Chu S I 2007 Phys. Rev. A 76 043412 [23] Miller M R, Jaroń-Becker A and Becker A 2016 Phys. Rev. A 93 013406 [24] Jiang S C and Dorfman K 2020 Proc. Natl. Acad. Sci. USA 117 9776 [25] Phan A L and Le D N 2021 Eur. Phys. J. B 94 165 [26] Li G H, Xie H Q, Li Z T, Yao J P, Chu W and Cheng Y 2017 High Power Laser Sci. Eng. 5 26 [27] Chen Y J, Liu J and Hu B 2009 Phys. Rev. A 79 033405 [28] Phan N L 2020 Commun. Phys. 30 99 [29] Morassut C, Ravindran A, Ciavardini A, Luppi E, De Ninno G and Coccia E 2024 J. Phys. Chem. A 128 2015 [30] Hu C X and He F 2024 Phys. Rev. A 109 033113 [31] Chini M, Wang X W, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Heslar J, Telnov D A, Chu S I and Chang Z H 2014 Nat. Photonics 8 437 [32] Beaulieu S, Camp S, Descamps D, Comby A, Wanie V, Petit S, Légaré F, Schafer K J, Gaarde M B and Catoire F 2016 Phys. Rev. Lett. 117 203001 [33] Peng S N, Chen Y D, Yang L, Fan G Y, Xie X H, He F and Tao Z S 2025 Phys. Rev. Lett. 134 123203 [34] Kulander K C and Shore B W 1989 Phys. Rev. Lett. 62 524 [35] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535 [36] Gu B and Garashchuk S 2015 AIP Conf. Proc. 1702 090014 [37] Tao L and Scrinzi A 2012 New J. Phys. 14 013021 [38] Bauer D and Koval P 2006 Comput. Phys. Commun. 174 396 [39] Crank J and Nicolson P 1947 Math. Proc. Camb. Philos. Soc. 43 50 [40] Lehtovaara L, Toivanen J and Eloranta J 2007 J. Comput. Phys. 221 148 [41] Trail J R 2008 Phys. Rev. E 77 016703 [42] Bartlett M S 1950 Biometrika 37 1 [43] Yuan K J and Bandrauk A D 2009 Phys. Rev. A 80 053404 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|