ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system |
Bin Liu(刘斌)1,† and Yixi Wang(王译浠)2 |
1 Department of Electronic Information and Artificial Intelligence, LeShan Normal University, LeShan 614099, China; 2 Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China |
|
|
Abstract Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors. Among the various thermal transport behaviors, achieving thermal transparency stands out as particularly desirable and intriguing. Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency. In this paper, we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior. Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.
|
Received: 23 February 2024
Revised: 08 April 2024
Accepted manuscript online:
|
PACS:
|
44.05.+e
|
(Analytical and numerical techniques)
|
|
44.90.+c
|
(Other topics in heat transfer)
|
|
07.05.Mh
|
(Neural networks, fuzzy logic, artificial intelligence)
|
|
65.90.+i
|
(Other topics in thermal properties of condensed matter)
|
|
Fund: We gratefully acknowledge funding from the National Natural Science Foundation of China (Grant Nos. 12035004 and 12320101004) and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2023ZKZD06). |
Corresponding Authors:
Bin Liu
E-mail: liubin@fudan.edu.cn
|
Cite this article:
Bin Liu(刘斌) and Yixi Wang(王译浠) A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system 2024 Chin. Phys. B 33 084401
|
[1] Xu L, Dai G and Huang J 2020 Phys. Rev. Appl. 13 024063 [2] Yang S, Xu L J, Wang R Z and Huang J P 2017 Appl. Phys. Lett. 111 121908 [3] Xu L, Xu G, Huang J and Qiu C W 2022 Phys. Rev. Lett. 128 145901 [4] Shen X, Jiang C, Li Y and Huang J 2016 Appl. Phys. Lett. 109 201906 [5] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501 [6] Jin P, Xu L, Jiang T, Zhang L and Huang J 2020 Int. J. Heat Mass Transfer 163 120437 [7] Yang F, Zhang Z, Xu L, Liu Z, Jin P, Zhuang P, Lei M, Liu J, Jiang J H, Ouyang X, Marchesoni F and Huang J 2024 Rev. Mod. Phys. 96 015002 [8] Li Y, Li W, Han T, Zheng X, Li J, Li B, Fan S and Qiu C W 2021 Nature Reviews Materials 6 488 [9] Yang S, Wang J, Dai G, Yang F and Huang J 2021 Phys. Rep. 908 1 [10] Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y and Huang J 2015 Phys. Rev. Lett. 115 195503 [11] Shen X, Li Y, Jiang C, Ni Y and Huang J 2016 Appl. Phys. Lett. 109 031907 [12] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907 [13] Chen T Y, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103 [14] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303 [15] Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901 [16] Xu H Y, Shi X H, Gao F, Sun H D and Zhang B L 2014 Phys. Rev. Lett. 112 054301 [17] Han T C, Bai X, Gao D L, Thong J T L, Li B W and Qiu C W 2014 Phys. Rev. Lett. 112 054302 [18] Ma Y G, Liu Y C, Raza M, Wang Y D and He S L 2014 Phys. Rev. Lett. 113 205501 [19] Dai G and Huang J 2018 J. Appl. Phys. 124 235103 [20] Yang S, Xu L and Huang J 2019 J. Appl. Phys. 125 055103 [21] Yang S, Xu L, Dai G and Huang J 2020 J. Appl. Phys. 128 095102 [22] Zhu N Q, Shen X Y and Huang J P 2015 AIP Advances 5 053401 [23] Xu L, Wang J, Dai G, Yang S, Yang F, Wang G and Huang J 2021 Int. J. Heat Mass Transfer 165 120659 [24] Yang F, Xu L and Huang J 2019 ES Energy Environment 6 45 [25] Kapadia R S and Bandaru P R 2014 Appl. Phys. Lett. 105 233903 [26] Xu L J, Yang S and Huang J P 2018 Phys. Rev. E 98 052128 [27] Han T C, Bai X, Thong J T L, Li B W and Qiu C W 2014 Adv. Mater. 26 1731 [28] He X and Wu L Z 2014 Appl. Phys. Lett. 105 221904 [29] Yang T Z, Su Y, Xu W and Yang X D 2016 Appl. Phys. Lett. 109 121905 [30] Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater. 30 1707237 [31] Zhou S L, Hu R and Luo X B 2018 Int. J. Heat Mass Transfer 127 607 [32] Xu L J and Huang J P 2018 Phys. Lett. A 382 3313 [33] Xu L, Wang R and Huang J 2018 J. Appl. Phys. 123 245111 [34] Li Y, Bai X, Yang T, Luo H and Qiu C W 2018 Nat. Commun. 9 273 [35] Peng Y G, Li Y, Cao P C, Zhu X F and Qiu C W 2020 Adv. Funct. Mater. 30 2002061 [36] He X and Wu L Z 2013 Phys. Rev. E 88 033201 [37] Zeng L W and Song R X 2014 Appl. Phys. Lett. 104 201905 [38] Yang T Z, Bai X, Gao D L, Wu L Z, Li B W, Thong J T L and Qiu C W 2015 Adv. Mater. 27 7752 [39] Wang R Z, Xu L J, Ji Q and Huang J P 2018 J. Appl. Phys. 123 115117 [40] Dong L, Huang J P, Yu K W and Gu G Q 2003 J. Appl. Phys. 95 621 [41] Huang J P, Karttunen M, Yu K W and Dong L 2003 Phys. Rev. E 67 021403 [42] Li Y, Zhu K J, Peng Y G, Li W, Yang T, Xu H X, Chen H, Zhu X F, Fan S and Qiu C W 2019 Nat. Mater. 18 48 [43] Li J, Li Y, Cao P C, Yang T, Zhu X F, Wang W and Qiu C W 2020 Adv. Mater. 32 2003823 [44] Xu G, Dong K, Li Y, Li H, Liu K, Li L, Wu J and Qiu C W 2020 Nat. Commun. 11 6028 [45] Li Y, Qi M, Li J, Cao P C, Wang D, Zhu X F, Qiu C W and Chen H 2022 Nat. Commun. 13 2683 [46] Guo J, Xu G, Tian D, Qu Z and Qiu C W 2022 Adv. Mater. 34 2201093 [47] Guo J, Xu G, Tian D, Qu Z and Qiu C W 2022 Adv. Mater. 34 2200329 [48] Sha W, Xiao M, Zhang J, Ren X, Zhu Z, Zhang Y, Xu G, Li H, Liu X, Chen X, Gao L, Qiu C W and Hu R 2021 Nat. Commun. 12 7228 [49] Sha W, Hu R, Xiao M, Chu S, Zhu Z, Qiu C W and Gao L 2022 Npj Comput. Mater. 8 179 [50] Yu S, Zhou P, Xi W, Chen Z, Deng Y, Luo X, Li W, Shiomi J and Hu R 2023 Light Sci. Appl. 12 291 [51] Chen Z, Yu S, Yuan C, Hu K and Hu R 2023 J. Appl. Phys. 134 203101 [52] Wang Z, Zhu Z, Liu T and Hu R 2022 J. Appl. Phys. 132 145102 [53] Fujii G, Akimoto Y and Takahashi M 2018 Appl. Phys. Lett. 112 061108 [54] Liu B, Xu L and Huang J 2021 J. Appl. Phys. 129 065101 [55] Liu B, Xu L and Huang J 2021 J. Appl. Phys. 130 045103 [56] Xu L, Yang S and Huang J 2019 Phys. Rev. Applied 11 034056 [57] Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C and Sun M 2020 AI Open 1 57 [58] Scarselli F, Gori M, Tsoi A C, Hagenbuchner M and Monfardini G 2009 IEEE Transactions on Neural Networks 20 61 [59] Monti F, Bronstein M M and Bresson X 2017 arXiv:1704.06803 [cs.LG] [60] Veličković P, Cucurull G, Casanova A, Romero A, Liò P and Bengio Y 2018 arXiv:1710.10903 [stat.ML] [61] Li Y, Yu R, Shahabi C and Liu Y 2018 arXiv:1707.01926 [cs.LG] [62] Wong F, Zheng E J, Valeri J A, Donghia N M, Anahtar M N, Omori S, Li A, Cubillos-Ruiz A, Krishnan A, Jin W, Manson A L, Friedrichs J, Helbig R, Hajian B, Fiejtek D K, Wagner F F, Soutter H H, Earl A M, Stokes J M, Renner L D and Collins J J 2024 Nature 626 177 [63] Zhang Y, Yao Q, Yue L, Wu X, Zhang Z, Lin Z and Zheng Y 2023 Nat. Comput. Sci. 3 1023 [64] Sun X, Jia X, Lu Z, Tang J and Li M 2023 Bioinformatics 40 btad748 [65] Han J, Cen J, Wu L, Li Z, Kong X, Jiao R, Yu Z, Xu T, Wu F, Wang Z, Xu H, Wei Z, Liu Y, Rong Y and Huang W 2024 arXiv:2403.00485 [cs.LG] [66] Dold D and Aranguren van Egmond D 2023 Cell Rep. Phys. Sci. 4 101586 [67] Kipf T N and Welling M 2017 arXiv:1609.02907 [cs.LG] [68] See https://www.comsol.com/ for information about the COMSOL Multiphysics software package. [69] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J and Chintala S 2019 Pytorch: An imperative style, high-performance deep learning library [70] The pandas development team 2020 pandas-dev/pandas: Pandas [71] Yang T, Bai X, Gao D, Wu L, Li B, Thong J and Qiu C W 2015 Adv. Mater. 27 7752 [72] Han T, Yang P, Li Y, Lei D, Li B, Hippalgaonkar K and Qiu C W 2018 Adv. Mater. 30 1804019 [73] Li Y, Shen X Y, Huang J P and Ni Y S 2016 Phys. Lett. A 380 1641 [74] Zhang X W, He X and Wu L Z 2022 Int. J. Heat Mass Transfer 193 122960 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|