Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 084401    DOI: 10.1088/1674-1056/ad4326
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system

Bin Liu(刘斌)1,† and Yixi Wang(王译浠)2
1 Department of Electronic Information and Artificial Intelligence, LeShan Normal University, LeShan 614099, China;
2 Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
Abstract  Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors. Among the various thermal transport behaviors, achieving thermal transparency stands out as particularly desirable and intriguing. Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency. In this paper, we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior. Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.
Keywords:  thermal metamaterial      thermal transparency      inverse design      machine learning      graph neural network  
Received:  23 February 2024      Revised:  08 April 2024      Accepted manuscript online: 
PACS:  44.05.+e (Analytical and numerical techniques)  
  44.90.+c (Other topics in heat transfer)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  65.90.+i (Other topics in thermal properties of condensed matter)  
Fund: We gratefully acknowledge funding from the National Natural Science Foundation of China (Grant Nos. 12035004 and 12320101004) and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2023ZKZD06).
Corresponding Authors:  Bin Liu     E-mail:  liubin@fudan.edu.cn

Cite this article: 

Bin Liu(刘斌) and Yixi Wang(王译浠) A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system 2024 Chin. Phys. B 33 084401

[1] Xu L, Dai G and Huang J 2020 Phys. Rev. Appl. 13 024063
[2] Yang S, Xu L J, Wang R Z and Huang J P 2017 Appl. Phys. Lett. 111 121908
[3] Xu L, Xu G, Huang J and Qiu C W 2022 Phys. Rev. Lett. 128 145901
[4] Shen X, Jiang C, Li Y and Huang J 2016 Appl. Phys. Lett. 109 201906
[5] Xu L J and Huang J P 2020 Chin. Phys. Lett. 37 120501
[6] Jin P, Xu L, Jiang T, Zhang L and Huang J 2020 Int. J. Heat Mass Transfer 163 120437
[7] Yang F, Zhang Z, Xu L, Liu Z, Jin P, Zhuang P, Lei M, Liu J, Jiang J H, Ouyang X, Marchesoni F and Huang J 2024 Rev. Mod. Phys. 96 015002
[8] Li Y, Li W, Han T, Zheng X, Li J, Li B, Fan S and Qiu C W 2021 Nature Reviews Materials 6 488
[9] Yang S, Wang J, Dai G, Yang F and Huang J 2021 Phys. Rep. 908 1
[10] Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y and Huang J 2015 Phys. Rev. Lett. 115 195503
[11] Shen X, Li Y, Jiang C, Ni Y and Huang J 2016 Appl. Phys. Lett. 109 031907
[12] Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907
[13] Chen T Y, Weng C N and Chen J S 2008 Appl. Phys. Lett. 93 114103
[14] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[15] Schittny R, Kadic M, Guenneau S and Wegener M 2013 Phys. Rev. Lett. 110 195901
[16] Xu H Y, Shi X H, Gao F, Sun H D and Zhang B L 2014 Phys. Rev. Lett. 112 054301
[17] Han T C, Bai X, Gao D L, Thong J T L, Li B W and Qiu C W 2014 Phys. Rev. Lett. 112 054302
[18] Ma Y G, Liu Y C, Raza M, Wang Y D and He S L 2014 Phys. Rev. Lett. 113 205501
[19] Dai G and Huang J 2018 J. Appl. Phys. 124 235103
[20] Yang S, Xu L and Huang J 2019 J. Appl. Phys. 125 055103
[21] Yang S, Xu L, Dai G and Huang J 2020 J. Appl. Phys. 128 095102
[22] Zhu N Q, Shen X Y and Huang J P 2015 AIP Advances 5 053401
[23] Xu L, Wang J, Dai G, Yang S, Yang F, Wang G and Huang J 2021 Int. J. Heat Mass Transfer 165 120659
[24] Yang F, Xu L and Huang J 2019 ES Energy Environment 6 45
[25] Kapadia R S and Bandaru P R 2014 Appl. Phys. Lett. 105 233903
[26] Xu L J, Yang S and Huang J P 2018 Phys. Rev. E 98 052128
[27] Han T C, Bai X, Thong J T L, Li B W and Qiu C W 2014 Adv. Mater. 26 1731
[28] He X and Wu L Z 2014 Appl. Phys. Lett. 105 221904
[29] Yang T Z, Su Y, Xu W and Yang X D 2016 Appl. Phys. Lett. 109 121905
[30] Hu R, Zhou S L, Li Y, Lei D Y, Luo X B and Qiu C W 2018 Adv. Mater. 30 1707237
[31] Zhou S L, Hu R and Luo X B 2018 Int. J. Heat Mass Transfer 127 607
[32] Xu L J and Huang J P 2018 Phys. Lett. A 382 3313
[33] Xu L, Wang R and Huang J 2018 J. Appl. Phys. 123 245111
[34] Li Y, Bai X, Yang T, Luo H and Qiu C W 2018 Nat. Commun. 9 273
[35] Peng Y G, Li Y, Cao P C, Zhu X F and Qiu C W 2020 Adv. Funct. Mater. 30 2002061
[36] He X and Wu L Z 2013 Phys. Rev. E 88 033201
[37] Zeng L W and Song R X 2014 Appl. Phys. Lett. 104 201905
[38] Yang T Z, Bai X, Gao D L, Wu L Z, Li B W, Thong J T L and Qiu C W 2015 Adv. Mater. 27 7752
[39] Wang R Z, Xu L J, Ji Q and Huang J P 2018 J. Appl. Phys. 123 115117
[40] Dong L, Huang J P, Yu K W and Gu G Q 2003 J. Appl. Phys. 95 621
[41] Huang J P, Karttunen M, Yu K W and Dong L 2003 Phys. Rev. E 67 021403
[42] Li Y, Zhu K J, Peng Y G, Li W, Yang T, Xu H X, Chen H, Zhu X F, Fan S and Qiu C W 2019 Nat. Mater. 18 48
[43] Li J, Li Y, Cao P C, Yang T, Zhu X F, Wang W and Qiu C W 2020 Adv. Mater. 32 2003823
[44] Xu G, Dong K, Li Y, Li H, Liu K, Li L, Wu J and Qiu C W 2020 Nat. Commun. 11 6028
[45] Li Y, Qi M, Li J, Cao P C, Wang D, Zhu X F, Qiu C W and Chen H 2022 Nat. Commun. 13 2683
[46] Guo J, Xu G, Tian D, Qu Z and Qiu C W 2022 Adv. Mater. 34 2201093
[47] Guo J, Xu G, Tian D, Qu Z and Qiu C W 2022 Adv. Mater. 34 2200329
[48] Sha W, Xiao M, Zhang J, Ren X, Zhu Z, Zhang Y, Xu G, Li H, Liu X, Chen X, Gao L, Qiu C W and Hu R 2021 Nat. Commun. 12 7228
[49] Sha W, Hu R, Xiao M, Chu S, Zhu Z, Qiu C W and Gao L 2022 Npj Comput. Mater. 8 179
[50] Yu S, Zhou P, Xi W, Chen Z, Deng Y, Luo X, Li W, Shiomi J and Hu R 2023 Light Sci. Appl. 12 291
[51] Chen Z, Yu S, Yuan C, Hu K and Hu R 2023 J. Appl. Phys. 134 203101
[52] Wang Z, Zhu Z, Liu T and Hu R 2022 J. Appl. Phys. 132 145102
[53] Fujii G, Akimoto Y and Takahashi M 2018 Appl. Phys. Lett. 112 061108
[54] Liu B, Xu L and Huang J 2021 J. Appl. Phys. 129 065101
[55] Liu B, Xu L and Huang J 2021 J. Appl. Phys. 130 045103
[56] Xu L, Yang S and Huang J 2019 Phys. Rev. Applied 11 034056
[57] Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C and Sun M 2020 AI Open 1 57
[58] Scarselli F, Gori M, Tsoi A C, Hagenbuchner M and Monfardini G 2009 IEEE Transactions on Neural Networks 20 61
[59] Monti F, Bronstein M M and Bresson X 2017 arXiv:1704.06803
[cs.LG]
[60] Veličković P, Cucurull G, Casanova A, Romero A, Liò P and Bengio Y 2018 arXiv:1710.10903
[stat.ML]
[61] Li Y, Yu R, Shahabi C and Liu Y 2018 arXiv:1707.01926
[cs.LG]
[62] Wong F, Zheng E J, Valeri J A, Donghia N M, Anahtar M N, Omori S, Li A, Cubillos-Ruiz A, Krishnan A, Jin W, Manson A L, Friedrichs J, Helbig R, Hajian B, Fiejtek D K, Wagner F F, Soutter H H, Earl A M, Stokes J M, Renner L D and Collins J J 2024 Nature 626 177
[63] Zhang Y, Yao Q, Yue L, Wu X, Zhang Z, Lin Z and Zheng Y 2023 Nat. Comput. Sci. 3 1023
[64] Sun X, Jia X, Lu Z, Tang J and Li M 2023 Bioinformatics 40 btad748
[65] Han J, Cen J, Wu L, Li Z, Kong X, Jiao R, Yu Z, Xu T, Wu F, Wang Z, Xu H, Wei Z, Liu Y, Rong Y and Huang W 2024 arXiv:2403.00485
[cs.LG]
[66] Dold D and Aranguren van Egmond D 2023 Cell Rep. Phys. Sci. 4 101586
[67] Kipf T N and Welling M 2017 arXiv:1609.02907
[cs.LG]
[68] See https://www.comsol.com/ for information about the COMSOL Multiphysics software package.
[69] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J and Chintala S 2019 Pytorch: An imperative style, high-performance deep learning library
[70] The pandas development team 2020 pandas-dev/pandas: Pandas
[71] Yang T, Bai X, Gao D, Wu L, Li B, Thong J and Qiu C W 2015 Adv. Mater. 27 7752
[72] Han T, Yang P, Li Y, Lei D, Li B, Hippalgaonkar K and Qiu C W 2018 Adv. Mater. 30 1804019
[73] Li Y, Shen X Y, Huang J P and Ni Y S 2016 Phys. Lett. A 380 1641
[74] Zhang X W, He X and Wu L Z 2022 Int. J. Heat Mass Transfer 193 122960
[1] Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance
Rui Xin(辛睿), Yaqi Wang(王亚祺), Ze Fang(房泽), Fengji Zheng(郑凤基), Wen Gao(高雯), Dashi Fu(付大石), Guoqing Shi(史国庆), Jian-Yi Liu(刘建一), and Yongcheng Zhang(张永成). Chin. Phys. B, 2024, 33(8): 087701.
[2] Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source
Menghui Mao(毛梦辉), Wei Zhou(周唯), Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(8): 080301.
[3] Physical information-enhanced graph neural network for predicting phase separation
Yaqiang Zhang(张亚强), Xuwen Wang(王煦文), Yanan Wang(王雅楠), and Wen Zheng(郑文). Chin. Phys. B, 2024, 33(7): 070702.
[4] Prediction of impurity spectrum function by deep learning algorithm
Ting Liu(刘婷), Rong-Sheng Han(韩榕生), and Liang Chen(陈亮). Chin. Phys. B, 2024, 33(5): 057102.
[5] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[6] Computing large deviation prefactors of stochastic dynamical systems based on machine learning
Yang Li(李扬), Shenglan Yuan(袁胜兰), Linghongzhi Lu(陆凌宏志), and Xianbin Liu(刘先斌). Chin. Phys. B, 2024, 33(4): 040501.
[7] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[8] General three-dimensional thermal illusion metamaterials
Tianfeng Liu(刘天丰), Zhaochen Wang(王兆宸), Zhan Zhu(朱展), and Run Hu(胡润). Chin. Phys. B, 2024, 33(4): 044401.
[9] Recent advances in protein conformation sampling by combining machine learning with molecular simulation
Yiming Tang(唐一鸣), Zhongyuan Yang(杨中元), Yifei Yao(姚逸飞), Yun Zhou(周运), Yuan Tan(谈圆),Zichao Wang(王子超), Tong Pan(潘瞳), Rui Xiong(熊瑞), Junli Sun(孙俊力), and Guanghong Wei(韦广红). Chin. Phys. B, 2024, 33(3): 030701.
[10] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[11] An artificial neural network potential for uranium metal at low pressures
Maosheng Hao(郝茂生) and Pengfei Guan(管鹏飞). Chin. Phys. B, 2023, 32(9): 098401.
[12] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[13] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[14] Generalization properties of restricted Boltzmann machine for short-range order
M A Timirgazin and A K Arzhnikov. Chin. Phys. B, 2023, 32(6): 067401.
[15] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
No Suggested Reading articles found!