| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable anomalous Hall effect and anisotropic magnetism in In-doped TbMn6Sn6 kagome magnets |
| Detong Wu(吴德桐)1,2,†, Jianwei Qin(秦建伟)1,2,†, and Bing Shen(沈冰)1,2,‡ |
1 Center for Neutron Science and Technology, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
|
|
Abstract Kagome magnets TbMn$_6$Sn$_{6-x}$In$_x$ ($x = 0$-1.2) exhibit a robust anomalous Hall effect (AHE) that persists above room temperature, demonstrating significant potential for high-temperature spintronics applications. At elevated temperatures, a spin-reorientation transition induces a ferrimagnetic state (FIM1) with in-plane magnetic moments, accompanied by a non-monotonic Hall response that differs markedly from the low-temperature behavior. Upon indium doping, the long-range ferrimagnetic transition is progressively suppressed to lower temperatures, along with a noticeable reduction in magnetic anisotropy. Interestingly, at a doping level of $x = 1.2$, the FIM1 state observed in the parent compound is completely eliminated. These systematic changes in magnetic ordering and transport properties underscore a coherent evolution of the electronic and magnetic states with doping, offering critical insights into the interplay among lattice structure, magnetism, and electronic behavior in kagome lattices.
|
Received: 07 April 2025
Revised: 28 May 2025
Accepted manuscript online: 29 May 2025
|
|
PACS:
|
72.20.My
|
(Galvanomagnetic and other magnetotransport effects)
|
| |
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
| |
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
| |
75.50.Gg
|
(Ferrimagnetics)
|
|
| Fund: Project supported by Guangzhou Basic and Applied Basic Research Foundation (Grant No. 2023B151520013), the National Natural Sciences Foundation of China (Grant No. 92165204), the National Key Research and Development Program of China (Grant Nos. 2023YFF0718400 and 2022YFA1403301), the Fund from the Research Center for Magnetoelectric Physics of Guangdong Province, China (Grant No.2024B0303390001), and the Independent Fund of the State Key Laboratory of Optoelectronic & Materials and Technologies (Sun Yat-sen University) (Grant No. OEMT-2023-ZTS-01). |
Corresponding Authors:
Bing Shen
E-mail: shenbing@mail.sysu.edu.cn
|
Cite this article:
Detong Wu(吴德桐), Jianwei Qin(秦建伟), and Bing Shen(沈冰) Tunable anomalous Hall effect and anisotropic magnetism in In-doped TbMn6Sn6 kagome magnets 2025 Chin. Phys. B 34 107511
|
[1] Xu X T, Yin J X, Qu Z and Jia S 2023 Rep. Prog. Phys. 86 114502 [2] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [3] Li R S, Zhang T, Ma W L, Xu S X, Wu Q, Yue L, Zhang S J, Liu Q M, Wang Z X, Hu T C, Zhou X Y, Wu D, Dong T, Jia S, Weng H M and Wang N L 2023 Phys. Rev. B 107 045115 [4] Riberolles S X M, Slade T J, Han T, Li B, Abernathy D L, Canfield P C, Ueland B G, Orth P P, Ke L and McQueeney R J 2024 Nat. Commun. 15 1592 [5] Li L F, Chi S W, Ma W L, Guo K Z, Xu G and Jia S 2024 Chin. Phys. B 33 057501 [6] Lyu M, Liu Y, Zhang S, Liu J, Yang J,Wang Y, Feng Y, Dong X,Wang B, Wei H and Liu E 2024 Chin. Phys. B 33 107507 [7] Lee Y, Skomski R, Wang X, Orth P P, Ren Y, Kang B, Pathak A K, Kutepov A, Harmon B N, McQueeney R J, Mazin I I and Ke L 2023 Phys. Rev. B 108 045132 [8] Perry L K, Ryan D H and Venturini G 2007 Phys. Rev. B 75 144417 [9] Riberolles S X M, Slade T J, Abernathy D L, Granroth G E, Li B, Lee Y, Canfield P C, Ueland B G, Ke L and McQueeney R J 2022 Phys. Rev. X 12 021043 [10] Wenzel M, Tsirlin A A, Iakutkina O, Yin Q, Lei H C, Dressel M and Uykur E 2022 Phys. Rev. B 106 L241108 [11] Venturini G, Idrissi B C E and Malaman B 1991 J. Magn. Magn. Mater. 94 35 [12] Ma W, Xu X, Yin J X, Yang H, Zhou H, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z and Jia S 2021 Phys. Rev. Lett. 126 246602 [13] Kimura S, Matsuo A, Yoshii S, Kindo K, Zhang L, Brück E, Buschow K H J, Boer F R, Lefèvre C and Venturini G 2006 J. Alloys Compd. 408-412 169 [14] Annaberdiyev A, Mandal S, Mitas L, Krogel J T and Ganesh P 2023 npj Quantum Mater. 8 50 [15] Huang D Q, Wang Y, Wang H, Wang J and Liu Y 2024 Chin. Phys. Lett. 41 047801 [16] Yin J X, Ma W, Cochran T A, et al. 2020 Nature 583 533 [17] Xu X, Yin J X, MaW, Tien H J, Qiang X B, Reddy PVS, Zhou H, Shen J, Lu H Z, Chang T R, Qu Z and Jia S 2022 Nat. Commun. 13 1197 [18] Zhang H, Koo J, Xu C, Sretenovic M, Yan B and Ke X 2022 Nat. Commun. 13 1091 [19] Li Y, Graham RG, Bunbury DStP, Mitchell PW, McCausland MAH, Chaughule RS, Gupta LC, Vijayaraghavan R and Godart C 1995 J. Magn. Magn. Mater. 140-144 1031 [20] Mielke III C, Ma W L, Pomjakushin V, et al. 2022 Commun. Phys. 5 107 [21] El Idrissi B C, Venturini G, Malaman B and Fruchart D 1991 J. Less- Common. Met. 175 143 [22] Huang Z,WangW, Ye H, Bao S, Shangguan Y, Liao J, Cao S, Kajimoto R, Ikeuchi K, Deng G, Smidman M, Song Y, Yu S L, Li J X and Wen J 2024 Phys. Rev. B 109 014434 [23] Riberolles S X M, Slade T J, Dally R L, Sarte P M, Li B, Han T, Lane H, Stock C, Bhandari H, Ghimire N J, Abernathy D L, Canfield P C, Lynn J W, Ueland B G and McQueeney R J 2023 Nat. Commun. 14 2658 [24] Terent’ev P B and Mushnikov N V 2005 Phys. Met. Metall. 100 571 [25] Chen X X, Zhao M, Liu G Z, Yao J L and Gao J 2016 Int. J. Mod. Phys. B 30 1650068 [26] Hu J, Yang F, Wang J, Pan H, Zhao R, Tang N, Wang Y, Wang Z, Zhou K, Zhong X and de Boer F R 1997 J. Appl. Phys. 82 760 [27] Terent’ev P B, Mushnikov N V, Gaviko V S, Shreder L A and Rosenfeld E V 2008 J. Magn. Magn. Mater. 320 836 [28] Wang Y, Yang F, Chen C, Tang N, Han X and Wang Q 1996 J. Phys.:L Condens. Matter 8 5737 [29] Wang Y G, Lin P, Chen C, Wang Q, Yang F and Tang N 1999 J. Mater. Sci. Lett. 18 1123 [30] Wei Q, Zhou Y, Tan H, Gao L, Liu R, Jing J, Li Y, Chen D, Long Y Z, Li Q, Qi Y, Yan B, Teng B and Chen D 2025 Phys. Rev. B 111 064412 [31] Zajkov N K, Mushnikov N V, Gerasimov E G, Gaviko V S, Bartashevich M I, Goto T and Khrabrov V I 2003 J. Alloys Compd. 363 40 [32] Zhao P, Zhang S Y, Cheng Z H, Zhang H W, Sun J R, Shen B G and Dunlap R A 2001 IEEE Trans. Magn. 37 2609 [33] Kong X M, Tao Z C, Zhang R, Xia W, Chen X, Pei C Y, Ying T P, Qi Y P, Guo Y F, Yang X F and Li S Y 2024 Chin. Phys. Lett. 41 047503 [34] Lefèvre C and Venturini G 2002 J. Alloys Compd. 340 6 [35] Lefèvre C, Venturini G and Malaman B 2003 J. Alloys Compd. 354 47 [36] Xu H K, Li W J, Chen J J, Khmelevskyi S, Khalyavin D, Manuel P, Xi C Y, Kawaguchi S, Chen J, YangW, Zhang Q H, Cao Y L, Yu C Y, Ren Y, Lin K and Xing X R 2025 J. Am. Chem. Soc. 147 11941 [37] Yoshii S, Kindo K, Zhang L, Brück E, Buschow KHJ, De Boer FR, Lefèvre C and Venturini G 2006 J. Alloys Compd. 408 173 [38] Wang B, Yi E, Li L, Qin J, Hu B F, Shen B and Wang M 2022 Phys. Rev. B 106 125107 [39] Yi E K, Zheng D F, Pan F H, Zhang H X,Wang B, Chen BW,Wu D T, Liang H L, Mei Z X, Wu H, Yang S A, Cheng P, Wang M and Shen B 2023 Phys. Rev. B 107 035142 [40] Li Z L, Yin Q W, Lv W X, Shen J, Wang S G, Zhao T Y, Cai J W, Lei H C, Lin S Z, Zhang Y and Shen B G 2024 Adv. Mater. 36 2309538 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|