Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077301    DOI: 10.1088/1674-1056/adcd42
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Current density in anomalous Hall effect regime under weak scattering

Ning Dai(戴凝)1,2,† and Bin Zhou(周斌)1,2
1 Department of Physics, Hubei University, Wuhan 430062, China;
2 Key Laboratory of Intelligent Sensing System and Security of Ministry of Education, Hubei University, Wuhan 430062, China
Abstract  A finite equilibrium current density arises in the anomalous Hall effect (AHE) as a result of time-reversal symmetry breaking, affecting both the differential current density and total current. In this paper, we illustrate the equilibrium current density in a ribbon-shaped system within the AHE regime, consisting of two sets of counterpropagating channels arranged in a zebra stripes pattern. While the middle channels are susceptible to scattering, the edge channels remain relatively robust. Despite this difference, all channels exhibit the same differential current density when subjected to a differential voltage across the two ends of the ribbon. When a differential voltage is applied to both sides of the ribbon, it results in a snaking pattern of differential current density forming across it. Furthermore, in a four-terminal device comprising the ribbon and two normal leads, it is found that Hall conductance is independent of ribbon width within certain scattering strengths due to the differences in robustness between middle and edge channels. These findings disclose the details of the AHE transport in a finite-sized system under weak scattering.
Keywords:  anomalous Hall effect      quantum transport      current density      non-equilibrium Green's function  
Received:  11 February 2025      Revised:  08 April 2025      Accepted manuscript online:  16 April 2025
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.43.-f (Quantum Hall effects)  
  73.23.Ad (Ballistic transport)  
Fund: We thank H L Li for helpful discussion. N Dai was supported by the National Natural Science Foundation of China (Grant No. 12304062). B Zhou was supported by the National Natural Science Foundation of China (Grant No. 12074107), the Program of Outstanding Young and Middle-aged Scientific and Technological Innovation Teams of Colleges and Universities in Hubei Province (Grant No. T2020001), and the Innovation Group Project of the Natural Science Foundation of Hubei Province of China (Grant No. 2022CFA012).
Corresponding Authors:  Ning Dai     E-mail:  daining@hubu.edu.cn

Cite this article: 

Ning Dai(戴凝) and Bin Zhou(周斌) Current density in anomalous Hall effect regime under weak scattering 2025 Chin. Phys. B 34 077301

[1] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[2] Chen H, Niu Q and MacDonald A H 2014 Phys. Rev. Lett. 112 017205
[3] Burkov A A 2014 Phys. Rev. Lett. 113 187202
[4] Smejkal L, MacDonald A H, Sinova J, Nakatsuji S and Jungwirth T 2022 Nat. Rev. Mater. 7 482
[5] Smit J 1958 Physica (Amsterdam) 24 39
[6] Berger L 1964 Physica 30 1141
[7] Sundaram G and Niu Q 1999 Phys. Rev. B 59 14915
[8] Xiao D, Shi J and Niu Q 2005 Phys. Rev. Lett. 95 137204
[9] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[10] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, et al. 2013 Science 340 167
[11] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[12] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A 2020 Science 367 900
[13] Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, et al. 2021 Nature 600 641
[14] Qiu G, Zhang P, Deng P, Chong S K, Tai L, Eckberg C and Wang K L 2022 Phys. Rev. Lett. 128 217704
[15] Chang C Z, Liu C X and MacDonald A H 2023 Rev. Mod. Phys. 95 011002
[16] Baum Y, Posske T, Fulga I C, Trauzettel B and Stern A 2015 Phys. Rev. Lett. 114 136801
[17] Hamad I J, Gazza C J and Riera J A 2016 Phys. Rev. B 93 205113
[18] Xu Y, Chu R L and Zhang C W 2014 Phys. Rev. Lett. 112 136402
[19] Colomes E and Franz M 2018 Phys. Rev. Lett. 120 086603
[20] Mandal S, Ge R and Liew T C H 2019 Phys. Rev. B 99 115423
[21] Bhowmick D and Sengupta P 2020 Phys. Rev. B 101 195133
[22] Cheng X, Chen J, Zhang L, Xiao L and Jia S 2021 Phys. Rev. B 104 L081401
[23] Wang Y, Liang B and Cheng J 2024 Phys. Rev. Appl. 22 044054
[24] Dai N and Sun Q F 2017 Phys. Rev. B 95 064205
[25] Li H, Liu H, Jiang H and Xie X C 2020 Phys. Rev. Lett. 125 036602
[26] Gong M, Lu M, Liu H, Jiang H, Sun Q F and Xie X C 2020 Phys. Rev. B 102 165425
[27] Mishchenko E G and Starykh O A 2014 Phys. Rev. B 90 035114
[28] Silvestrov P G and Recher P 2019 Phys. Rev. B 100 115404
[29] Lima L R F and Lewenkopf C 2022 Phys. Rev. B 105 085420
[30] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[31] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[32] Dai N, Zhou Y F, Lv P and Sun Q F 2018 Phys. Rev. B 98 085422
[33] Cheng S G, Jiang H, Sun Q F and Xie X C 2020 Phys. Rev. B 102 075304
[34] Chen R, Sun H P, Zhou B and Xu D H 2023 Sci. China Phys. Mech. Astron. 66 287211
[35] Streda P and Jonckheere T 2010 Phys. Rev. B 82 113303
[36] Streda P and Výborný K 2023 Phys. Rev. B 107 014425
[37] Chen KW, Aryal N, Dai J, Graf D, Zhang S, Das S, Le Fèvre P, Bertran F, Yukawa R and Horiba K, Kumigashira H, Frantzeskakis E, Fortuna F, Balicas L, Santander-Syro A F, Manousakis E and Baumbach R E 2018 Phys. Rev. B 97 165112
[38] Ying X and Kamenev A 2018 Phys. Rev. Lett. 121 086810
[39] Ying X and Kamenev A 2019 Phys. Rev. B 99 245411
[40] Xie L C, Wu H C, Jin L and Song Z 2021 Phys. Rev. B 104 165422
[41] Büttiker M 1986 Phys. Rev. B 33 3020
[42] Li H L, Jiang H, Sun Q F and Xie X C 2024 Sci. Bull. 69 1221
[43] Liu P Y and Sun Q F 2024 Phys. Rev. B 110 085411
[44] Lv P, Dai N and Sun Q F 2018 Phys. Rev. B 97 235425
[1] Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals
Yaofeng Xie(谢耀锋), Senhao Lv(吕森浩), Qi Qi(齐琦), Guojing Hu(胡国静), Ke Zhu(祝轲), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Ruwen Wang(王汝文), Chenyu Bai(白晨宇), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(8): 087303.
[2] Fabrication and characterization of MgB2 spherical shells with reduced thickness on 1 mm diameter Si3N4 spheres
Ruining Sun(孙瑞宁), Tiequan Xu(徐铁权), Yue Wang(王越), Furen Wang(王福仁), and Zizhao Gan(甘子钊). Chin. Phys. B, 2025, 34(7): 077402.
[3] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[4] Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction
Zhuangzhuang Qu(曲壮壮), Zhihao Chen(陈志豪), Xiangyan Han(韩香岩), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Wenjun Zhao(赵文俊), Kenji Watanabe, Takashi Taniguchi, Zhi-Gang Cheng(程智刚), Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2025, 34(3): 037201.
[5] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn
Bo-Wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[6] Tailoring-compensated ferrimagnetic state and anomalous Hall effect in quaternary Mn-Ru-V-Ga Heusler compounds
Jin-Jing Liang(梁瑾静), Xue-Kui Xi(郗学奎), Wen-Hong Wang(王文洪), and Yong-Chang Lau(刘永昌). Chin. Phys. B, 2024, 33(7): 077504.
[7] Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure
Xiao-Jing Dong(董晓晶) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(7): 077303.
[8] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[9] Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device
Xiao-Long Lü(吕小龙), Jia-En Yang(杨加恩), and Hang Xie(谢航). Chin. Phys. B, 2024, 33(6): 068502.
[10] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[11] Enhanced anomalous Hall effect in kagome magnet YbMn6Sn6 with intermediate-valence ytterbium
Longfei Li(李龙飞), Shengwei Chi(迟晟玮), Wenlong Ma(马文龙), Kaizhen Guo(郭凯臻), Gang Xu(徐刚), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057501.
[12] Terahertz high-sensitivity SIS mixer based on Nb-AlN-NbN hybrid superconducting tunnel junctions
Bo-Liang Liu(刘博梁), Dong Liu(刘冬), Ming Yao(姚明), Jun-Da Jin(金骏达), Zheng Wang(王争), Jing Li(李婧), Sheng-Cai Shi(史生才), Artem Chekushkin, Michael Fominsky, Lyudmila Filippenko, and Valery Koshelets. Chin. Phys. B, 2024, 33(5): 058501.
[13] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[14] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[15] Anomalous Hall effect and electronic correlation in a spin-reoriented kagome antiferromagnet LuFe6Sn6
Meng Lyu(吕孟), Yang Liu(刘洋), Shen Zhang(张伸), Junyan Liu(刘俊艳), Jinying Yang(杨金颖), Yibo Wang(王一博), Yiting Feng(冯乙婷), Xuebin Dong(董学斌), Binbin Wang(王彬彬), Hongxiang Wei(魏红祥), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(10): 107507.
No Suggested Reading articles found!