Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087501    DOI: 10.1088/1674-1056/ad4a3b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn

Bo-Wen Chen(陈博文)1,2 and Bing Shen(沈冰)1,2,†
1 Center for Neutron Science and Technology, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  Magnetic topological semimetal can host various topological non-trivial states leading to exotic novel transport properties. Here we report the systematic magneto-transport studies on the Heusler alloy Nb$_{x}$Zr$_{1-x}$Co$_2$Sn considered as a ferromagnetic (FM) Weyl semimetal. The cusp anomaly of temperature-dependent resistivity and large isotropic negative magneto-resistivity (MR) emerge around the FM transition consistent with the theoretical half-metallic predictions. The prominent anomalous Hall effect (AHE) has the same behavior with the applied field along various crystal directions. The Nb doping introduces more disorder resulting in the enhancement of the upturn for the temperature-dependent resistivity in low temperatures. With Nb doping, the AHE exhibits systemic evolution with the Fermi level lifted. At the doping level of $x=0.25$, the AHE mainly originates from the intrinsic contribution related to non-trivial topological Weyl states.
Keywords:  anomalous Hall effect      magnetic Weyl semimetal      ferromagnetism  
Received:  10 March 2024      Revised:  22 April 2024      Accepted manuscript online: 
PACS:  75.20.En (Metals and alloys)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFF0718400 and 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. U2130101 and 92165204), the Natural Science Foundation of Guangdong Province, China (Grant No. 2022A1515010035), the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No. 2022B1212010008), and the Open Project of Key Laboratory of Optoelectronic Materials and Technologies (Grant No. OEMT-2023-ZTS-01).
Corresponding Authors:  Bing Shen     E-mail:  Shenbing@mail.sysu.edu.cn

Cite this article: 

Bo-Wen Chen(陈博文) and Bing Shen(沈冰) Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn 2024 Chin. Phys. B 33 087501

[1] Bernevig B A, Felser C and Beidenkopf H 2022 Nature 603 41
[2] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[3] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416
[4] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[5] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[6] Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G and Comin R 2020 Nat. Mater. 19 163
[7] Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004
[8] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[9] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282
[10] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[11] Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S and Lei H 2018 Nat. Commun. 9 3681
[12] Yang H, You W, Wang J, Huang J, Xi C, Xu X, Cao C, Tian M, Xu Z A, Dai J and Li Y 2020 Phys. Rev. Mater. 4 024202
[13] Gao L, Shen S, Wang Q, Shi W, Zhao Y, Li C, Cao W, Pei C, Ge J Y, Li G, Li J, Chen Y, Yan S and Qi Y 2021 Appl. Phys. Lett. 119 092405
[14] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S and Zahid Hasan M 2020 Nature 583 533
[15] Burkov A A 2014 Phys. Rev. Lett. 113 187202
[16] Wang Z, Vergniory M G, Kushwaha S, Hirschberger M, Chulkov E V, Ernst A, Ong N P, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 236401
[17] Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W and Checkelsky J G 2016 Nat. Phys. 12 1119
[18] Li P, Koo J, Ning W, Li J, Miao L, Min L, Zhu Y, Wang Y, Alem N, Liu C X, Mao Z and Yan B 2020 Nat. Commun. 11 3476
[19] Sakai A, Mizuta Y P, Nugroho A A, Sihombing R, Koretsune T, Suzuki M T, Takemori N, Ishii R, Nishio-Hamane D, Arita R, Goswami P and Nakatsuji S 2018 Nat. Phys. 14 1119
[20] Sklyadneva I, Heid R, Echenique P M and Chulkov E V 2021 Phys. Rev. B 103 024303
[21] Matthiessen A and Vogt C 1864 Ann. Phys. 198 19
[22] Barth J, Fecher G H, Balke B, Ouardi S, Graf T, Felser C, Shkabko A, Weidenkaff A, Klaer P, Elmers H J, Yoshikawa H, Ueda S and Kobayashi K 2010 Phys. Rev. B 81 064404
[23] Kataoka M 2001 Phys. Rev. B 63 134435
[24] Kamble R B, Tanty N, Patra A and Prasad V 2016 Appl. Phys. Lett. 109 083102
[25] Arrott A 1957 Phys. Rev. 108 1394
[26] Yang M, Gu G, Yi C, Yan D, Li Y and Shi Y 2019 J. Phys.: Condens. Matter 31 275702
[27] Friedemann S, Brando M, Duncan W J, Neubauer A, Pfleiderer C and Grosche F M 2013 Phys. Rev. B 87 024410
[28] Checkelsky J G, Lee M, Morosan E, Cava R J and Ong N P 2008 Phys. Rev. B 77 014433
[29] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[30] Zeng C, Yao Y, Niu Q and Weitering H H 2006 Phys. Rev. Lett. 96 037204
[31] Huang Y Q, Zheng P Y, Liu R, Xu X T, Wu Z Y, Dong C, Wang J F, Yin Z P and Jia S 2023 Chin. Phys. B 32 107502
[32] Shukla G K, Sau J, Shahi N, Singh A K, Kumar M and Singh S 2021 Phys. Rev. B 104 195108
[33] Liu Y, Tan H, Hu Z, Yan B and Petrovic C 2021 Phys. Rev. B 103 045106
[34] Wang Q, Sun S, Zhang X, Pang F and Lei H 2016 Phys. Rev. B 94 075135
[35] Haldane F D M 2004 Phys. Rev. Lett. 93 206602
[36] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kbler J, Felser C and Parkin S S P 2016 Sci. Adv. 2 e1501870
[37] Onoda S, Sugimoto N and Nagaosa N 2006 Phys. Rev. Lett. 97 126602
[1] Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳). Chin. Phys. B, 2024, 33(9): 097101.
[2] Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure
Xiao-Jing Dong(董晓晶) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(7): 077303.
[3] Tailoring-compensated ferrimagnetic state and anomalous Hall effect in quaternary Mn-Ru-V-Ga Heusler compounds
Jin-Jing Liang(梁瑾静), Xue-Kui Xi(郗学奎), Wen-Hong Wang(王文洪), and Yong-Chang Lau(刘永昌). Chin. Phys. B, 2024, 33(7): 077504.
[4] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[5] Enhanced anomalous Hall effect in kagome magnet YbMn6Sn6 with intermediate-valence ytterbium
Longfei Li(李龙飞), Shengwei Chi(迟晟玮), Wenlong Ma(马文龙), Kaizhen Guo(郭凯臻), Gang Xu(徐刚), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057501.
[6] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[7] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[8] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[9] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[10] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
[11] Doping tuned anomalous Hall effect in the van der Waals magnetic topological phases Mn(Sb1-xBix)4Te7
Xin Zhang(张鑫), Zhicheng Jiang(江志诚), Jian Yuan(袁健), Xiaofei Hou(侯骁飞), Xia Wang(王霞),Na Yu(余娜), Zhiqiang Zou(邹志强), Zhengtai Liu(刘正太), Wei Xia(夏威),Zhenhai Yu(于振海), Dawei Shen(沈大伟), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(9): 097201.
[12] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[13] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[14] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[15] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
No Suggested Reading articles found!