Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027502    DOI: 10.1088/1674-1056/ad9e98
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of Co substitution for Fe on microstructure and magnetic properties of FeNiSiBCuNb alloy ribbons

Wen-Feng Liu(刘文峰)1,2,†, Ya-Ting Yuan(袁雅婷)1, Chang-Jiang Yu(于长江)1, Shu-Jie Kang(康树杰)1, Qian-Ke Zhu(朱乾科)1,2, Zhe Chen(陈哲)1,2, Ke-Wei Zhang(张克维)1,2, and Min-Gang Zhang(张敏刚)1,2
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2 Laboratory of Magnetic and Electric Functional Materials and Applications, The Key Laboratory of Shanxi Province, Taiyuan 030024, China
Abstract  This work investigated the microstructure, magnetic properties, and crystallization kinetics of the as-spun and annealed alloy ribbons of (Fe$_{40-x}$Co$_{x}$Ni$_{40}$Si$_{6.33}$B$_{12.66}$Cu$_{1}$) $_{0.97}$Nb$_{0.03}$, where $x=0$, 6, 7, 8, 9, prepared using the melt-spinning method. The results show that adding a moderate amount of Co can improve the glass forming ability (GFA), the first peak crystallization temperature, and thermal stability of the as-spun alloy ribbons. With $x= 7$, the two-stage crystallization temperature interval $\Delta T_{x} = 90$ exhibits optimal thermal stability, and the alloy annealed at 673 K for 10 minutes shows the favorable combined magnetic properties, with $H_{\rm c} = 0.12$ A/m, $M_{\rm s} = 88.7$ A$\cdot$m$^2$/kg, and $\mu_{\rm e} = 13800$. The magnetic domain results show that annealing removes numerous pinning points in the magnetic domains of the alloy ribbons, making the domain walls smoother and effectively reducing the pinning effect.
Keywords:  amorphous alloys      Co substitution for Fe      glass formation ability      magnetic properties      crystallization kinetics  
Received:  24 September 2024      Revised:  15 November 2024      Accepted manuscript online:  13 December 2024
PACS:  75.60.Nt (Magnetic annealing and temperature-hysteresis effects)  
  75.60.Ch (Domain walls and domain structure)  
  41.20.Gz (Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)  
  75.50.Kj (Amorphous and quasicrystalline magnetic materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52275567), the Key Research and Development Program of Shanxi Province, China (Grant No. 202202050201020), the Doctoral Starting-up Foundation of Taiyuan University of Science and Technology (Grant No. 20192016), the Research Project Supported by Shanxi Scholarship Council (Grant No. 2017-085), the Graduate Education and Teaching Reform Project of Shanxi Province, China (Grant No. 2023JG136), and the Special Fund for Science and Technology Innovation Teams of Shanxi Province, China (Grant No. 202304051001036).
Corresponding Authors:  Wen-Feng Liu     E-mail:  wfliu@tyust.edu.cn

Cite this article: 

Wen-Feng Liu(刘文峰), Ya-Ting Yuan(袁雅婷), Chang-Jiang Yu(于长江), Shu-Jie Kang(康树杰), Qian-Ke Zhu(朱乾科), Zhe Chen(陈哲), Ke-Wei Zhang(张克维), and Min-Gang Zhang(张敏刚) Effect of Co substitution for Fe on microstructure and magnetic properties of FeNiSiBCuNb alloy ribbons 2025 Chin. Phys. B 34 027502

[1] Hasegawa R 2004 Mater. Sci. Eng. A 375–377 90
[2] Jia X J, Li Y H, Wu L C and Zhang W 2020 J. Alloys Compd. 822 152784
[3] Huo J T, Li K Y, Zang B W, Gao M, Wang L M, Sun B A, Li M Z, Song L J, Wang J Q and Wang W H 2022 Chin. Phys. Lett. 39 046401
[4] Wang A D, Zhao C L, He A N, Yue S Q, Chang C T, Shen B L, Wang X M and Li R W 2016 Intermetallics 71 1
[5] Pang J, Qiu K Q, Kong F Y, Wang A D, Liang X F, Wang C J, Chang C T, Wang X M and Liu C T 2017 J. Non-Cryst. Solids 471 238
[6] Xiao J H, Ding D W, Li Lin, Sun Y T, Li M Z and Wang W H 2024 Chin. Phys. B 33 076101
[7] Zhou J, Wang Q Q, Hui X D, Zeng Q S, Xiong Y W, Yin K B, Sun B A, Sun L T, Stoica M H, Wang W H and Shen B L 2020 Mater. Des. 191 108597
[8] Chen Z, Zhu Q K, Zhang K W, Guo Q and Jiang Y 2020 J. Mater. Sci. 56 4871
[9] Raya I, Chupradit S, Kadhim M M, Mahmoud M, Jalil A T, Surendar A, Ghafel S T, Mustafa Y F and Bochvar A N 2022 Chin. Phys. B 31 016401
[10] Huang H, Tsukahara H, Kato A, Ono K and Suzuki K 2024 J. Magn. Magn. Mater. 592 171810
[11] Yu W Q, Tian B, Zhang P L, Wang J H and Hua Z 2023 Chin. Phys. B 32 088102
[12] Hao Z Y, Wei L Z, Wang Y C, Kawazoe Y, Liang X Y, Umetsu R, Yodoshi N, Tong X, Xia W X, Zhang Y and Cao C D 2022 J. Alloys Compd. 920 166029
[13] Kostyrya S A and Idzikowski B 2006 J. Magn. Magn. Mater. 304 e537
[14] Liang Y C, Xian G, Zhou L L, Tian Z A, Chen Q, Mo Y F, Liu R S, Gao T H, Xie Q and He M 2022 J. Alloys Compd. 891 161953
[15] Gheiratmand T and Hosseini H R M 2016 J. Magn. Magn. Mater. 408 177
[16] Sheng W W, Qiu Z G, Zheng Z G, Liu X and Zeng D C 2021 J. Non- Cryst. Solids 559 120677
[17] ShengWW, Qiu Z G, Zheng Z G and Zeng D C 2021 J. Alloys Compd. 855 157436
[18] Zhang Y, Sharma P and Makino A 2014 IEEE Trans. Magn. 50 2006804
[19] Tong X, Zhang Y, Wang Y C, Liang X Y, Zhang K, Zhang F, Cai Y F, Ke H B,Wang G, Shen J, Makino A andWangWH 2022 J. Mater. Sci. Technol. 96 233
[20] Xi G G, Sun C, Han M H, Li H G, Cui J L and Zhang T 2024 J. Non- Cryst. Solids 633 122951
[21] Li M X, Sun Y T, Wang C, Hu L W, Sohn S, Schroers J, Wang W H and Liu Y H 2022 Nat. Mater. 21 165
[22] Song K K, Bian X F, Guo J, Li X L, Xie M T and Dong C J 2008 J. Alloys Compd. 465 L7
[23] Michalski P P, Pietrzak T K, Nowiński J L, Wasiucionek M and Garbarczyk J E 2016 J. Non-Cryst. Solids 443 155
[24] Chen Z, Zhu Q K, Zhang K W and Jiang Y 2020 Cryst. Growth Des. 20 2187
[25] Zhao M, Yang D, Zhang W, Liu H Y, Xiang Q C, Pang J, Ren Y L, Li X Y and Qiu K Q 2024 J. Alloys Compd. 988 174267
[26] Wang Y F, Xu J, Liu Y J and Liu ZW2022 Mater. Charact. 187 111830
[27] Farjas J and Roura P 2014 Thermochimica Acta 598 51
[28] Zhang Y, Zhou Y J, Lin J P, Chen G L and Liaw P K 2008 Adv. Eng. Mater. 10 534
[29] Zuo T T, Zhang M, P Liaw K and Zhang Y 2018 Intermetallics 100 1
[30] Zou J H, Gao R L, Fu C L, CaiW, Chen G and Deng X L 2018 Process. Appl. Ceram. 12 335
[31] Chen Z, Zhu Q K, Zhang K W, Guo Q and Jiang Y 2021 J. Mater. Sci. 56 4871
[32] Jia X J, Li Y H, Wu L C and Zhang W 2020 J. Alloys Compd. 822 152784
[33] Zhu Q K, Guo L, Chen Z, Jiang Y, Li M, Zhang KW, Hu J F, LiWand Guo Q 2022 J. Non-Cryst. Solids 593 121776
[34] Talaat A, Egbu J, Phatak C, Byerly K, McHenry M E and Ohodnicki P R 2022 Mater. Res. Bull. 152 111839
[1] Database of ternary amorphous alloys based on machine learning
Xuhe Gong(巩旭菏), Ran Li(李然), Ruijuan Xiao(肖睿娟), Tao Zhang(张涛), and Hong Li(李泓). Chin. Phys. B, 2025, 34(1): 016101.
[2] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[3] Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2024, 33(7): 076101.
[4] Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
Shiyue He(何诗悦), Ruoshui Liu(刘若水), Xujie Liu(刘煦婕), Xianping Ye(叶先平), Lichen Wang(王利晨), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(6): 066801.
[5] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[6] Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
Fengguo Fan(范凤国) and Lintong Duan(段林彤). Chin. Phys. B, 2024, 33(3): 037502.
[7] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[8] Cu-doped nanocomposite Pr2Fe14B/α-Fe ribbons with high (BH)max
Mehran Khan Alam, Shahzab Raza, Chengyong Gao(高成勇), Guangbing Han(韩广兵), and Shishou Kang(康仕寿). Chin. Phys. B, 2024, 33(12): 127504.
[9] Enhanced soft magnetic properties of SiO2-coated FeSiCr magnetic powder cores by particle size effect
Mingyue Ge(葛铭悦), Likang Xiao(肖礼康), Xiaoru Liu(刘潇如), Lin Pan(潘嶙), Zhangyang Zhou(周章洋), Jianghe Lan(蓝江河), Zhengwei Xiong(熊政伟), Jichuan Wu(吴冀川), and Zhipeng Gao(高志鹏). Chin. Phys. B, 2024, 33(10): 107503.
[10] Impact of Co2+ substitution on structure and magnetic properties of M-type strontium ferrite with different Fe/Sr ratios
Yang Sun(孙洋), Ruoshui Liu(刘若水), Huayang Gong(宫华扬), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(10): 107506.
[11] Analysis on the cation distribution of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) using Mössbauer spectroscopy and magnetic measurement
Shiyu Xu(徐诗语), Jiajun Mo(莫家俊), Lebin Liu(刘乐彬), and Min Liu(刘 敏). Chin. Phys. B, 2023, 32(12): 127507.
[12] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[13] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[14] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[15] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
No Suggested Reading articles found!