CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of Co substitution for Fe on microstructure and magnetic properties of FeNiSiBCuNb alloy ribbons |
Wen-Feng Liu(刘文峰)1,2,†, Ya-Ting Yuan(袁雅婷)1, Chang-Jiang Yu(于长江)1, Shu-Jie Kang(康树杰)1, Qian-Ke Zhu(朱乾科)1,2, Zhe Chen(陈哲)1,2, Ke-Wei Zhang(张克维)1,2, and Min-Gang Zhang(张敏刚)1,2 |
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; 2 Laboratory of Magnetic and Electric Functional Materials and Applications, The Key Laboratory of Shanxi Province, Taiyuan 030024, China |
|
|
Abstract This work investigated the microstructure, magnetic properties, and crystallization kinetics of the as-spun and annealed alloy ribbons of (Fe$_{40-x}$Co$_{x}$Ni$_{40}$Si$_{6.33}$B$_{12.66}$Cu$_{1}$) $_{0.97}$Nb$_{0.03}$, where $x=0$, 6, 7, 8, 9, prepared using the melt-spinning method. The results show that adding a moderate amount of Co can improve the glass forming ability (GFA), the first peak crystallization temperature, and thermal stability of the as-spun alloy ribbons. With $x= 7$, the two-stage crystallization temperature interval $\Delta T_{x} = 90$ exhibits optimal thermal stability, and the alloy annealed at 673 K for 10 minutes shows the favorable combined magnetic properties, with $H_{\rm c} = 0.12$ A/m, $M_{\rm s} = 88.7$ A$\cdot$m$^2$/kg, and $\mu_{\rm e} = 13800$. The magnetic domain results show that annealing removes numerous pinning points in the magnetic domains of the alloy ribbons, making the domain walls smoother and effectively reducing the pinning effect.
|
Received: 24 September 2024
Revised: 15 November 2024
Accepted manuscript online: 13 December 2024
|
PACS:
|
75.60.Nt
|
(Magnetic annealing and temperature-hysteresis effects)
|
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
41.20.Gz
|
(Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)
|
|
75.50.Kj
|
(Amorphous and quasicrystalline magnetic materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52275567), the Key Research and Development Program of Shanxi Province, China (Grant No. 202202050201020), the Doctoral Starting-up Foundation of Taiyuan University of Science and Technology (Grant No. 20192016), the Research Project Supported by Shanxi Scholarship Council (Grant No. 2017-085), the Graduate Education and Teaching Reform Project of Shanxi Province, China (Grant No. 2023JG136), and the Special Fund for Science and Technology Innovation Teams of Shanxi Province, China (Grant No. 202304051001036). |
Corresponding Authors:
Wen-Feng Liu
E-mail: wfliu@tyust.edu.cn
|
Cite this article:
Wen-Feng Liu(刘文峰), Ya-Ting Yuan(袁雅婷), Chang-Jiang Yu(于长江), Shu-Jie Kang(康树杰), Qian-Ke Zhu(朱乾科), Zhe Chen(陈哲), Ke-Wei Zhang(张克维), and Min-Gang Zhang(张敏刚) Effect of Co substitution for Fe on microstructure and magnetic properties of FeNiSiBCuNb alloy ribbons 2025 Chin. Phys. B 34 027502
|
[1] Hasegawa R 2004 Mater. Sci. Eng. A 375–377 90 [2] Jia X J, Li Y H, Wu L C and Zhang W 2020 J. Alloys Compd. 822 152784 [3] Huo J T, Li K Y, Zang B W, Gao M, Wang L M, Sun B A, Li M Z, Song L J, Wang J Q and Wang W H 2022 Chin. Phys. Lett. 39 046401 [4] Wang A D, Zhao C L, He A N, Yue S Q, Chang C T, Shen B L, Wang X M and Li R W 2016 Intermetallics 71 1 [5] Pang J, Qiu K Q, Kong F Y, Wang A D, Liang X F, Wang C J, Chang C T, Wang X M and Liu C T 2017 J. Non-Cryst. Solids 471 238 [6] Xiao J H, Ding D W, Li Lin, Sun Y T, Li M Z and Wang W H 2024 Chin. Phys. B 33 076101 [7] Zhou J, Wang Q Q, Hui X D, Zeng Q S, Xiong Y W, Yin K B, Sun B A, Sun L T, Stoica M H, Wang W H and Shen B L 2020 Mater. Des. 191 108597 [8] Chen Z, Zhu Q K, Zhang K W, Guo Q and Jiang Y 2020 J. Mater. Sci. 56 4871 [9] Raya I, Chupradit S, Kadhim M M, Mahmoud M, Jalil A T, Surendar A, Ghafel S T, Mustafa Y F and Bochvar A N 2022 Chin. Phys. B 31 016401 [10] Huang H, Tsukahara H, Kato A, Ono K and Suzuki K 2024 J. Magn. Magn. Mater. 592 171810 [11] Yu W Q, Tian B, Zhang P L, Wang J H and Hua Z 2023 Chin. Phys. B 32 088102 [12] Hao Z Y, Wei L Z, Wang Y C, Kawazoe Y, Liang X Y, Umetsu R, Yodoshi N, Tong X, Xia W X, Zhang Y and Cao C D 2022 J. Alloys Compd. 920 166029 [13] Kostyrya S A and Idzikowski B 2006 J. Magn. Magn. Mater. 304 e537 [14] Liang Y C, Xian G, Zhou L L, Tian Z A, Chen Q, Mo Y F, Liu R S, Gao T H, Xie Q and He M 2022 J. Alloys Compd. 891 161953 [15] Gheiratmand T and Hosseini H R M 2016 J. Magn. Magn. Mater. 408 177 [16] Sheng W W, Qiu Z G, Zheng Z G, Liu X and Zeng D C 2021 J. Non- Cryst. Solids 559 120677 [17] ShengWW, Qiu Z G, Zheng Z G and Zeng D C 2021 J. Alloys Compd. 855 157436 [18] Zhang Y, Sharma P and Makino A 2014 IEEE Trans. Magn. 50 2006804 [19] Tong X, Zhang Y, Wang Y C, Liang X Y, Zhang K, Zhang F, Cai Y F, Ke H B,Wang G, Shen J, Makino A andWangWH 2022 J. Mater. Sci. Technol. 96 233 [20] Xi G G, Sun C, Han M H, Li H G, Cui J L and Zhang T 2024 J. Non- Cryst. Solids 633 122951 [21] Li M X, Sun Y T, Wang C, Hu L W, Sohn S, Schroers J, Wang W H and Liu Y H 2022 Nat. Mater. 21 165 [22] Song K K, Bian X F, Guo J, Li X L, Xie M T and Dong C J 2008 J. Alloys Compd. 465 L7 [23] Michalski P P, Pietrzak T K, Nowiński J L, Wasiucionek M and Garbarczyk J E 2016 J. Non-Cryst. Solids 443 155 [24] Chen Z, Zhu Q K, Zhang K W and Jiang Y 2020 Cryst. Growth Des. 20 2187 [25] Zhao M, Yang D, Zhang W, Liu H Y, Xiang Q C, Pang J, Ren Y L, Li X Y and Qiu K Q 2024 J. Alloys Compd. 988 174267 [26] Wang Y F, Xu J, Liu Y J and Liu ZW2022 Mater. Charact. 187 111830 [27] Farjas J and Roura P 2014 Thermochimica Acta 598 51 [28] Zhang Y, Zhou Y J, Lin J P, Chen G L and Liaw P K 2008 Adv. Eng. Mater. 10 534 [29] Zuo T T, Zhang M, P Liaw K and Zhang Y 2018 Intermetallics 100 1 [30] Zou J H, Gao R L, Fu C L, CaiW, Chen G and Deng X L 2018 Process. Appl. Ceram. 12 335 [31] Chen Z, Zhu Q K, Zhang K W, Guo Q and Jiang Y 2021 J. Mater. Sci. 56 4871 [32] Jia X J, Li Y H, Wu L C and Zhang W 2020 J. Alloys Compd. 822 152784 [33] Zhu Q K, Guo L, Chen Z, Jiang Y, Li M, Zhang KW, Hu J F, LiWand Guo Q 2022 J. Non-Cryst. Solids 593 121776 [34] Talaat A, Egbu J, Phatak C, Byerly K, McHenry M E and Ohodnicki P R 2022 Mater. Res. Bull. 152 111839 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|