| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Chemical pressure manipulation of ferromagnetism in magnetic semiconductor Ba(Zn,Mn,Cu)2As2 |
| Xueqin Zhao(赵雪芹)1, Jinou Dong(董金瓯)1, Lingfeng Xie(谢玲凤)1, Xun Pan(潘洵)1, Haoyuan Tang(唐浩原)1, Zhicheng Xu(徐之程)1, and Fanlong Ning(宁凡龙)1,2,3,4,† |
1 School of Physics, Zhejiang University, Hangzhou 310027, China; 2 Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China; 3 State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China; 4 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
|
|
Abstract We report the manipulation of ferromagnetism in magnetic semiconductor Ba(Zn,Mn,Cu)$_{2}$As$_{2}$ through chemical pressure. The substitutions of Sr for Ba and Sb for As introduce positive and negative chemical pressures, respectively; neither Sr doping nor Sb doping change the tetragonal crystal structure. Based on Ba(Zn$_{0.75}$Mn$_{0.125}$Cu$_{0.125}$)$_{2}$As$_{2}$ with $T_{{\rm C}}$ $\sim34$ K, 10% Sr/Ba substitutions significantly improve $T_{{\rm C}}$ by $\sim15$% to 39 K, whereas 10% Sb/As substitutions substantially reduce $T_{{\rm C}}$ by $\sim47$% to 18 K. The AC magnetic susceptibility measurements indicate that Sr-doped and Sb-doped samples evolve into a spin glass state below the spin freezing temperature $T_{{\rm f}}$. Electrical transport measurements demonstrate that Sr-doped specimens retain semiconducting behavior; additionally, they display a significant negative magnetoresistance effect under applied magnetic fields and the magnetoresistance reaches $\sim-19%$ at 8 T.
|
Received: 30 April 2025
Revised: 14 May 2025
Accepted manuscript online: 22 May 2025
|
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
| |
75.50.Lk
|
(Spin glasses and other random magnets)
|
| |
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1402701 and 2022YFA1403202), the National Natural Science Foundation of China (Grant No. 12074333), and the Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C01002). |
Corresponding Authors:
Fanlong Ning
E-mail: ningfl@zju.edu.cn
|
Cite this article:
Xueqin Zhao(赵雪芹), Jinou Dong(董金瓯), Lingfeng Xie(谢玲凤), Xun Pan(潘洵), Haoyuan Tang(唐浩原), Zhicheng Xu(徐之程), and Fanlong Ning(宁凡龙) Chemical pressure manipulation of ferromagnetism in magnetic semiconductor Ba(Zn,Mn,Cu)2As2 2025 Chin. Phys. B 34 107510
|
[1] Ohno H 1998 Science 281 951 [2] Zutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323 [3] Wolfand S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukesand M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [4] Dietl T 2010 Nat. Mater. 9 965 [5] Dietl T and Ohno H 2014 Rev. Mod. Phys. 86 187 [6] Munekata H, Ohno H and von Molnar S, Segmüller A, Chang L L and Esaki L 1989 Phys. Rev. Lett. 63 1849 [7] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S and Iye Y 1996 Appl. Phys. Lett. 63 363 [8] Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P and von Molnár S 2011 Nano Lett. 11 2584 [9] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H and Awschalom D D 1999 Nature 402 790 [10] Tanaka M 2020 Jpn. J. Appl. Phys. 60 010101 [11] Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F L, Zhang J S, Wang Y Y, Aczel A A, Munsie T,Williams T J, Luke G M, Kakeshita T, Uchida S, HigemotoW, Ito T U, Gu B, Maekawa S, Morris G D and Uemura Y J 2011 Nat. Commun. 2 422 [12] Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J S, Wang Y Y, Ning F L, Maekawa S, Uemura Y J and Jin C Q 2013 Phys. Rev. B 88 081203 [13] Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F L, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Böni P and Jin C Q 2013 Nat. Commun. 4 1442 [14] Man H Y, Guo S L, Sui Y, Guo Y, Chen B, Wang H D, Ding C and Ning F L 2015 Sci. Rep. 5 15507 [15] Ding C, Man H Y, Qin C, Lu J C, Sun Y L, Wang Q, Yu B Q, Feng C M, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H D, Luetkens H., Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D’Ortenzio R M, Medina T, Luke G M, Imai T and Ning F L 2013 Phys. Rev. B 88 041102 [16] Han W, Zhao K, Wang X C, Liu Q Q, Ning F L, Deng Z, Liu Y, Zhu J L, Ding C, Man H Y and Jin C Q 2013 Sci. China- Phys. Mech. Astron. 56 2026 [17] Ding C, Qin C, Man H Y, Imai T and Ning F L 2013 Phys. Rev. B 88 041108 [18] Ning F L, Man H Y, Gong X, Zhi G X, Guo S L, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H D and Chen B 2014 Phys. Rev. B 90 085123 [19] Peng Y, Li X, Shi L C, Zhao G Q, Zhang J, Zhao J F,Wang X C, Gu B, Deng Z, Uemura Y J and Jin C Q 2025 Adv. Phys. Res. 4 2400124 [20] Csontos M, Mihaly G, Jankó B, Wojtowicz T, Liu X and Furdyna J K 2005 Nat. Mater. 4 447 [21] Gryglas-Borysiewicz M, Kwiatkowski A, Baj M, Wasik D, Przybytek J and Sadowski J 2010 Phys. Rev. B 82 153204 [22] Sun F, Li N N, Chen B J and Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G and Jin C Q 2016 Phys. Rev. B 93 224403 [23] Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G and Jin C Q 2017 Phys. Rev. B 95 094412 [24] Peng Y, Yu S, Zhao G Q, LiWM, Zhao J F, Cao L P,Wang X C, Liu Q Q, Zhang S J, Yu R Z, Deng Z, Zhu X H and Jin C Q 2019 Chin. Phys. B 28 057501 [25] Fu L C, Gu Y L, Zhi G X, Zhang H J, Zhang R F, Dong J O, Zhao X Q, Xie L F and Ning F L 2021 Sci. Rep. 11 7652 [26] Zhang R F, Xu C C, Fu L C, Gu Y L, Zhi G X, Dong J O, Zhao X Q, Xie L F, Zhang H J, Cao C and Ning F L 2022 J. Magn. Magn. Mater. 554 169276 [27] RotterMand TegelMand Johrendt D 2008 Phys. Rev. Lett. 101 107006 [28] Singh Y, Green M A, Huang Q, Kreyssig A, McQueeney R J, Johnston D C and Goldman A I 2009 Phys. Rev. B 80 100403 [29] Toby B H and Von Dreele R B 2013 J. Appl. Crystallogr 46 544 [30] Glasbrenner J K, Zutić I and Mazin I I 2014 Phys. Rev. B 90 140403 [31] Mulder C A M, van Duyneveldt A J and Mydosh J A 1981 Phys. Rev. B 23 1384 [32] Lekshmi P N, Raji G R, Vasundhara M, Varma M R, Pillai S S and Valant M 2013 J. Mater. Chem. C 1 6565 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|