Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107512    DOI: 10.1088/1674-1056/ade071
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Stability and characteristic modes of skyrmions in magnetic nanotubes

Tijjani Abdulrazak1,2,†, Qizhi Cai(蔡淇智)1,3, and Guangwei Deng(邓光伟)1,3,4,‡
1 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China;
2 Department of Physics, Bayero University, Kano 700006, Nigeria;
3 Key Laboratory Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China;
4 Institute of Electronics and Information Industry Technology of Kash, Kash 844000, China
Abstract  We study the stability and dynamic behaviors of skyrmions in magnetic nanotubes, where curvature and cylindrical symmetry provide unique mechanisms for skyrmion formation and control. Unlike planar geometries, skyrmions confined in nanotubes exhibit elliptical shapes, stabilized through the interplay of curvature-induced effects, Dzyaloshinskii-Moriya interaction (DMI), and magnetic anisotropy. Using micromagnetic simulations, we construct phase diagrams of skyrmion stability as functions of DMI strength and anisotropy, identifying transitions to saturated or helical configurations in unstable regimes. The dynamics reveal distinct counterclockwise gyration modes, strongly influenced by tube geometry and applied microwave fields. We find that external magnetic fields significantly enhance the azimuthal velocity ($\bar{v}_\phi$) while maintaining a consistent axial motion ($\bar{v}_z$) along the $-z$-direction. Furthermore, transitions between gyration and linear translation modes emerge, governed by the combined effects of magnetic field, DMI, and curvature. Notably, the skyrmion's motion direction depends on the excitation mode and DMI sign, while curvature-modified spin textures produce effective fields without conventional pinning. These results demonstrate that magnetic nanotubes offer a robust and tunable platform for skyrmion manipulation, with potential applications in next-generation memory and logic devices. Our findings also highlight the role of curvature in enabling stable and controllable topological spin textures for advanced spintronic technologies.
Keywords:  ferromagnetic      magnetic field      MuMax3 software      skyrmion      spin wave  
Received:  17 April 2025      Revised:  30 May 2025      Accepted manuscript online:  04 June 2025
PACS:  75.50.Gg (Ferrimagnetics)  
  71.35.Ji (Excitons in magnetic fields; magnetoexcitons)  
  12.39.Dc (Skyrmions)  
  75.30.Ds (Spin waves)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1405900), the National Natural Science Foundation of China (Grant Nos. U2441217 and 12074058), and Sichuan Science and Technology Program (Grant No. 2024YFHZ0372).
Corresponding Authors:  Tijjani Abdulrazak, Guangwei Deng     E-mail:  atijjani.phy@buk.edu.ng;gwdeng@uestc.edu.cn

Cite this article: 

Tijjani Abdulrazak, Qizhi Cai(蔡淇智), and Guangwei Deng(邓光伟) Stability and characteristic modes of skyrmions in magnetic nanotubes 2025 Chin. Phys. B 34 107512

[1] Fert A and Cros V 2013 Nat. Nanotechnol. 8 152
[2] Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Sci. Rep. 5 7643
[3] Tomasello R, Martinez E, Zivieri R, Torres L, CarpentieriMand Finocchio G 2014 Sci. Rep. 4 6784
[4] Huang Y, Kang W, Zhang X, Zhou Y and Zhao W 2017 Nanotechnology 28 08LT02
[5] Zhang X, Ezawa M and Zhou Y 2015 Sci. Rep. 5 9400
[6] Huo X and Liu Y 2019 New J. Phys. 21 093024
[7] Heinze S, Von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713
[8] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, et al. 2010 Science 330 1648
[9] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988
[10] Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M and Rosch A 2012 Nat. Phys. 8 301
[11] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742
[12] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[13] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463
[14] Abdulrazak T, Liu X, Wang Z, Cao Y and Yan P 2024 Chin. Phys. B 33 107504
[15] Yoo M W, Cros V and Kim J V 2017 Phys. Rev. B 95 184423
[16] Zhang X, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293
[17] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[18] Moriya T 1960 Phys. Rev. 120 91
[19] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[20] Yu X, Kikkawa A, Morikawa D, Shibata K, Tokunaga Y, Taguchi Y and Tokura Y 2015 Phys. Rev. B 91 054411
[21] Jin C M and Du H F 2015 Chin. Phys. B 24 128501
[22] Fert A and Van Dau F N 2019 C. R. Phys. 20 817
[23] Landeros P and Núñez A S 2010 J. Appl. Phys. 108 034303
[24] Landeros P, Allende S, Escrig J, Salcedo E, Altbir D and Vogel E E 2007 Appl. Phys. Lett. 90 102501
[25] Yan M, Andreas C, Kákay A, García-Sánchez F and Hertel R 2011 Appl. Phys. Lett. 99 122505
[26] Hertel R 2016 J. Phys.: Condens. Matter 28 483002
[27] Bachmann J, Knez M, Barth S, Shen H, Mathur S, Gösele U and Nielsch K 2007 J. Am. Chem. Soc. 129 9554
[28] Weber D P, Rüffer D, Buchter A, Xue F, Russo-Averchi E, Huber R, Berberich P, Arbiol J, Fontcuberta i Morral A, Grundler D, et al. 2012 Nano Lett. 12 6139
[29] Buchter A, Nagel J, Rüffer D, Xue F, Weber D P, Kieler O F, Weimann T, Kohlmann J, Zorin A B, Russo-Averchi E, et al. 2013 Phys. Rev. Lett. 111 067202
[30] Fernandez-Roldan J A, Chrischon D, Dorneles L S, Chubykalo- Fesenko O, Vazquez M and Bran C 2018 Nanomaterials 8 692
[31] Gaididei Y, Kravchuk V P and Sheka D D 2014 Phys. Rev. Lett. 112 257203
[32] Yershov K, Kravchuk V, Sheka D and Roessler U 2020 SciPost Phys. 9 043
[33] Sheka D D 2021 Appl. Phys. Lett. 118 230502
[34] Kravchuk V P, Rößler U K, Volkov O M, Sheka D D, van den Brink J, Makarov D, Fuchs H, Fangohr H and Gaididei Y 2016 Phys. Rev. B 94 144402
[35] Yang J, Abert C, Suess D and Kim S-K 2021 Sci. Rep. 11 3886
[36] Carvalho-Santos V L, Corona R M, Altbir D and Castillo-Sepúlveda S 2020 Phys. Rev. B 102 024444
[37] Tejo F, Toneto D, Oyarzún S, Hermosilla J, Danna C S, Palma J L, da Silva R B, Dorneles L S and Denardin J C 2020 ACS Appl. Mater. Interfaces 12 53454
[38] Carvalho-Santos V L, Castro M A, Salazar-Aravena D, Laroze D, Corona R M, Allende S and Altbir D 2021 Appl. Phys. Lett. 118 172405
[39] Korniienko A, Kákay A, Sheka D D and Kravchuk V P 2020 Phys. Rev. B 102 014432
[40] Farias W S, Santece I A and Coura P Z 2023 J. Magn. Magn. Mater. 568 170386
[41] Yershov K V, Kákay A and Kravchuk V P 2022 Phys. Rev. B 105 054425
[42] Kechrakos D, Tzannetou L and Patsopoulos A 2020 Phys. Rev. B 102 054439
[43] Yu X and Liu Y 2021 Phys. Lett. A 415 127656
[44] Wang X, Wang X S, Wang C, Yang H, Cao Y and Yan P 2019 J. Phys. D: Appl. Phys. 52 225001
[45] Yang J, Kim J, Abert C, Suess D and Kim S K 2020 Phys. Rev. B 102 094439
[46] Ga Y, Cui Q, Liang J, Yu D, Zhu Y, Wang L and Yang H 2022 Phys. Rev. B 106 054426
[47] Jiang J, Ga Y, Li P, Cui Q, Wang L, Yu D, Liang J and Yang H 2024 Phys. Rev. B 109 014402
[48] Müller J and Rosch A 2015 Phys. Rev. B 91 054410
[49] Zhang X, Zhou Y and Ezawa M 2016 Sci. Rep. 6 24795
[50] Dupé B, Hoffmann M, Paillard C and Heinze S 2014 Nat. Commun. 5 4030
[51] von Malottki S, Dupé B, Bessarab P F, Delin A and Heinze S 2017 Sci. Rep. 7 12299
[52] Hagemeister J, Romming N, Von Bergmann K, Vedmedenko E Y and Wiesendanger R 2015 Nat. Commun. 6 8455
[53] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133
[54] Wang W, Albert M, Beg M, Bisotti M A, Chernyshenko D, Cortès- Ortuño D, Hawke I and Fangohr H 2015 Phys. Rev. Lett. 114 087203
[55] Büttner F, Lemesh I and Beach G S D 2018 Sci. Rep. 8 4464
[56] Wang X S, Yuan H Y and Wang X R 2018 Commun. Phys. 1 1
[57] Wang X S, Yuan H Y and Wang X R 2018 Commun. Phys. 1 31
[58] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422
[59] Yoo J W, Lee S J, Moon J H and Lee K J 2014 IEEE Trans. Magn. 50 2500404
[60] Mochizuki M 2012 Phys. Rev. Lett. 108 017601
[61] Galvez D, Castro M, Bittencourt G, Carvalho V and Allende S 2023 Nanomaterials 13 2841
[62] Mochizuki M 2012 Phys. Rev. Lett. 108 017601
[63] Abdulrazak T, Liu X, Jin Z, Cao Y and Yan P 2024 Chin. Phys. B 33 087503
[64] Papanicolaou N and Tomaras T N 1991 Nucl. Phys. B 360 425
[65] Abdulrazak T, Liu X, Wang Z, Cao Y and Yan P 2024 Chin. Phys. B 33 107504
[66] Jin C, Li Z A, Kovács A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blügel S, Tian M and Zhang Y 2017 Nat. Commun 8 15569
[67] Zheng F, Li H,Wang S, Song D, Jin C, WeiW, Kovács A, Zang J, Tian M, Zhang Y and Du H 2017 Phys. Rev. Lett 119 197205
[68] Zhao X, Jin C, Wang C, Du H, Zang J, Tian M, Che R and Zhang Y 2016 Proc. Natl. Acad. Sci. USA 113 4918
[69] Stolt M J, Li Z A, Phillips B, Song D, Mathur N, Dunin-Borkowski R E and Jin S 2017 Nano Lett. 17 508
[1] Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals
Yaofeng Xie(谢耀锋), Senhao Lv(吕森浩), Qi Qi(齐琦), Guojing Hu(胡国静), Ke Zhu(祝轲), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Ruwen Wang(王汝文), Chenyu Bai(白晨宇), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(8): 087303.
[2] Ab initio prediction of ground-state magnetic ordering and high-pressure magnetic phase transition of uranium mononitride
Jing-Jing Zheng(郑晶晶), Yuxi Chen(陈禹西), Chengxiang Zhao(赵承祥), Junfeng Zhang(张均锋), Ping Zhang(张平), Bao-Tian Wang(王保田), and Jiang-Jiang Ma(马江将). Chin. Phys. B, 2025, 34(8): 087101.
[3] Deformation of magnetic skyrmion due to skyrmion-skyrmion interaction
Zhen-Qian Cui(崔振茜), Wen-Li Yang(杨文力), and Jun-Hui Zheng(郑俊辉). Chin. Phys. B, 2025, 34(7): 077502.
[4] High-sensitivity spectroscopic measurements under pulsed high magnetic field
Zheng Wang(王政), Yichun Pan(潘议淳), Guangran Yang(杨光冉), Wei Xie(谢微), and Weihang Zhou(周伟航). Chin. Phys. B, 2025, 34(7): 070701.
[5] Role of symmetry in antiferromagnetic topological insulators
Sahar Ghasemi and Morad Ebrahimkhas. Chin. Phys. B, 2025, 34(7): 077302.
[6] Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator
Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源). Chin. Phys. B, 2025, 34(6): 067501.
[7] Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering
Guofu Xu(徐国服), Kang An(安康), Wenjun Ma(马文俊), Xiling Li(李喜玲), C. K. Ong, Chi Zhang(张驰), and Guozhi Chai(柴国志). Chin. Phys. B, 2025, 34(6): 067507.
[8] Planar Hall effect without chiral anomaly in layered topological semimetal candidate GaGeTe
Cheng Wang(王成), Ankang Zhu(朱安康), Ziyi Fan(范子怡), Peng Huang(黄鹏), Xue Liu(刘学), Xuegang Chen(陈学刚), Yuyan Han(韩玉岩), Zheng Chen(陈正), Xiangde Zhu(朱相德), Mingliang Tian(田明亮), and Wenshuai Gao(高文帅). Chin. Phys. B, 2025, 34(6): 067202.
[9] Strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction and applications on spin-wave devices
Chuhan Zhou(周楚涵), Xiaotian Jiao(焦晓天), Jiaxi Xu(徐佳熙), Zhaonian Jin(金兆年), Lin Chen(陈琳), and Zhikuo Tao(陶志阔). Chin. Phys. B, 2025, 34(2): 027501.
[10] Spin-wave propagation in a bilayer of van derWaals magnet and ferrimagnetic insulator
Tengfei Xie(谢腾飞) and Huajun Qin(秦华军). Chin. Phys. B, 2025, 34(10): 107202.
[11] Multipartite entanglement and one-way steering in magnon frequency comb
Qianjun Zheng(郑芊君), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2025, 34(10): 107514.
[12] Review of magnons in van der Waals materials: From fundamental physics to frontiers
Zhen-Nan Wang(王震南), Yan-Pei Lv(吕延培), Hao-Nan Chang(常浩男), and Jun Zhang(张俊). Chin. Phys. B, 2025, 34(10): 107201.
[13] Micromagnetic study of the dipolar-exchange spin waves in antiferromagnetic thin films
Jiongjie Wang(王炯杰) and Jiang Xiao(肖江). Chin. Phys. B, 2025, 34(10): 107505.
[14] Ballistic magnon circulators with magnetic skyrmions
Haichuan Zhang(张海川), Hongbin Wu(武宏斌), and Jin Lan(兰金). Chin. Phys. B, 2025, 34(10): 107503.
[15] Directly tunable magnon frequency comb effect based on domain wall
Xiaoxue Yang(杨霄雪), Huiting Li(李慧婷), Xue-Feng Zhang(张雪枫), Xiao-Ping Ma(马晓萍), Je-Ho Shim(沈帝虎), Yingjiu Jin(金迎九), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2025, 34(10): 107507.
No Suggested Reading articles found!