Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107505    DOI: 10.1088/1674-1056/addaa4
Special Issue: SPECIAL TOPIC — Advanced magnonics
SPECIAL TOPIC — Advanced magnonics Prev   Next  

Micromagnetic study of the dipolar-exchange spin waves in antiferromagnetic thin films

Jiongjie Wang(王炯杰)1 and Jiang Xiao(肖江)1,2,3,4,†
1 Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China;
2 Institute for Nanoelectronics Devices and Quantum Computing, Fudan University, Shanghai 200433, China;
3 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China;
4 Hefei National Laboratory, Hefei 230088, China
Abstract  In antiferromagnets, dipolar coupling is often disregarded due to the cancellation of magnetic moments between the two sublattices, so that the spin-wave dispersion is predominantly determined by exchange interactions. However, antiferromagnetic spin waves typically involve a slight misalignment of the magnetic moments on the sublattices, which gives rise to a small net magnetization enabling long-range dipolar coupling. In this paper, we investigate the role of dipolar coupling in spin-wave excitations and its influence on the resulting dispersion. Our findings show that: (i) when the Néel vector is perpendicular to the film plane or lies within the film plane and parallel to the wave vector, the dispersion branches can be divided into two groups: those unaffected by the dipolar field and those influenced by it. In these cases, the total magnetic moment remains linearly polarized, but the polarization directions differ between the two types of branches; (ii) when the Néel vector lies in the film plane and is perpendicular to the wave vector, the dipolar interactions affect both types of dispersion branches, leading to their hybridization. This hybridization alters the polarization of the magnetic moment, resulting in elliptical polarization.
Keywords:  spin waves      spintronics      antiferromagnetics      magnetic properties of thin films  
Received:  28 March 2025      Revised:  19 May 2025      Accepted manuscript online:  20 May 2025
PACS:  75.30.Ds (Spin waves)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.50.Ee (Antiferromagnetics)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant No. 12474110), the National Key Research and Development Program of China (Grant No. 2022YFA1403300), the Innovation Program for Quantum Science and Technology (Grant No. 2024ZD0300103), and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01).
Corresponding Authors:  Jiang Xiao     E-mail:  xiaojiang@fudan.edu.cn

Cite this article: 

Jiongjie Wang(王炯杰) and Jiang Xiao(肖江) Micromagnetic study of the dipolar-exchange spin waves in antiferromagnetic thin films 2025 Chin. Phys. B 34 107505

[1] Gurevich A G and Melkov G A 1996 Magnetization Oscillations and Waves (Boca Raton: CRC Press)
[2] Stancil D D and Prabhakar A 2009 Spin Waves (New York: Springer)
[3] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453
[4] Yu H, Xiao J and Schultheiss H 2021 Phys. Rep. 905 1
[5] De Wames R E and Wolfram T 1969 Phys. Rev. 185 752
[6] Goedsche F 1970 Phys. Status Solidi B 41 711
[7] Kalinikos B A 1981 Sov. Phys. J. 24 718
[8] Mika K and Grünberg P 1985 Phys. Rev. B 31 4465
[9] Kalinikos B A and Slavin A N 1986 J. Phys. C: Solid State Phys. 19 7013
[10] Hillebrands B 1990 Phys. Rev. B 41 530
[11] Harms J S and Duine R A 2022 J. Magn. Magn. Mater. 557 169426
[12] Keffer F and Kittel C 1952 Phys. Rev. 85 329
[13] Marshall W 1955 Proc. R. Soc. Lond. A 232 69
[14] Oguchi T 1960 Phys. Rev. 117 117
[15] des Cloizeaux J and Pearson J J 1962 Phys. Rev. 128 2131
[16] Loudon R and Pincus P 1963 Phys. Rev. 132 673
[17] Wolfram T and De Wames R E 1969 Phys. Rev. 185 762
[18] Camley R E 1980 Phys. Rev. Lett. 45 283
[19] Lüthi B and Hock R 1983 J. Magn. Magn. Mater. 38 264
[20] Stamps R L and Camley R E 1987 Phys. Rev. B 35 1919
[21] Pereira J M and Cottam M G 1999 J. Appl. Phys. 85 4949
[22] Wieser R, Vedmedenko E Y andWiesendanger R 2009 Phys. Rev. B 79 144412
[23] Shen K 2020 Phys. Rev. Lett. 124 077201
[24] Liu J, Wang L and Shen K 2020 Phys. Rev. Res. 2 023282
[25] Sun Y, Meng F, Lee C, Soll A, Zhang H, Ramesh R, Yao J, Sofer Z and Orenstein J 2024 Nat. Phys. 20 794
[26] Cheng R, Daniels M W, Zhu J G and Xiao D 2016 Sci. Rep. 6 24223
[27] Lan J, Yu W and Xiao J 2017 Nat. Commun. 8 178
[28] Proskurin I, Stamps R L, Ovchinnikov A S and Kishine J i 2017 Phys. Rev. Lett. 119 177202
[29] Yu W, Lan J and Xiao J 2018 Phys. Rev. B 98 144422
[30] Abert C 2019 Eur. Phys. J. B 92 120
[31] Comsol A B COMSOL Multiphysics
[32] YuWCOMSOL Blog: Micromagnetic Simulation with COMSOL Multiphysics
[33] Solovyev I V 1997 Phys. Rev. B 55 8060
[34] Treves D 1962 Phys. Rev. 125 1843
[35] Lan J, Yu W, Wu R and Xiao J 2015 Phys. Rev. X 5 041049
[36] Yu W, Lan J, Wu R and Xiao J 2016 Phys. Rev. B 94 140410
[37] Yu W, Lan J and Xiao J 2020 Phys. Rev. Appl. 13 024055
[38] Yu W, Xiao J and Bauer G E W 2021 Phys. Rev. B 104 L180405
[39] Zhang J, Yu W, Chen X and Xiao J 2023 AIP Adv. 13 055108
[40] van den Boom S J, van Keulen F and Aragon A M 2021 Comput. Methods Appl. Mech. Eng. 382 113848
[41] Yan P, Wang X S and Wang X R 2011 Phys. Rev. Lett. 107 177207
[42] Prabhakar A and Stancil D D 2009 Spin Waves: Theory and Applications (Boston: Springer)
[43] Dvornik M and Kruglyak V V 2011 Phys. Rev. B 84 140405
[44] Kumar D, Dmytriiev O, Ponraj S and Barman A 2011 J. Phys. D: Appl. Phys. 45 015001
[45] Schwarze T, Huber R, Duerr G and Grundler D 2012 Phys. Rev. B 85 134448
[46] Han D S, Vogel A, Jung H, Lee K S, Weigander M, Stoll H, Schütz G, Fischer P, Meier G and Kim S K 2013 Sci. Rep. 3 2262
[47] Krawczyk M and Grundler D 2014 J. Phys.: Condens. Matter 26 123202
[48] Qin H, Both G J, Hämäläinen S J, Yao L and van Dijken S 2018 Nat. Commun. 9 5445
[49] Sheng L, Duvakina A, Wang H, Yamamoto K, Yuan R, Wang J, Chen P, He W, Yu K, Zhang Y, Chen J, Hu J, Song W, Liu S, Han X, Yu D, Ansermet J P, Maekawa S, Grundler D and Yu H 2025 Nat. Phys. 21 740
[50] De Wames R E and Wolfram T 1970 J. Appl. Phys. 41 987
[1] Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator
Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源). Chin. Phys. B, 2025, 34(6): 067501.
[2] First principles prediction of the valley Hall effect in ScBrCl monolayer
Xiang Yu(于翔), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2025, 34(4): 047305.
[3] Review of magnons in van der Waals materials: From fundamental physics to frontiers
Zhen-Nan Wang(王震南), Yan-Pei Lv(吕延培), Hao-Nan Chang(常浩男), and Jun Zhang(张俊). Chin. Phys. B, 2025, 34(10): 107201.
[4] Controlling coupled magnons with pumps
Fan Yang(杨帆), Chenxiao Wang(王辰笑), Zhijian Chen(陈志坚), Kaixin Zhao(赵恺欣), Weihao Liu(刘炜豪), Shuhuan Ma(马舒寰), Chunke Wei(魏纯可), Jiantao Song(宋剑涛), Jinwei Rao(饶金威), and Bimu Yao(姚碧霂). Chin. Phys. B, 2025, 34(10): 107508.
[5] Spin-wave propagation in a bilayer of van derWaals magnet and ferrimagnetic insulator
Tengfei Xie(谢腾飞) and Huajun Qin(秦华军). Chin. Phys. B, 2025, 34(10): 107202.
[6] Directly tunable magnon frequency comb effect based on domain wall
Xiaoxue Yang(杨霄雪), Huiting Li(李慧婷), Xue-Feng Zhang(张雪枫), Xiao-Ping Ma(马晓萍), Je-Ho Shim(沈帝虎), Yingjiu Jin(金迎九), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2025, 34(10): 107507.
[7] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[8] RKKY interaction in helical higher-order topological insulators
Sha Jin(金莎), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2024, 33(7): 077503.
[9] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[10] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[11] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[12] Polarity-controllable magnetic skyrmion filter
Xiao-Lin Ai(艾啸林), Hui-Ting Li(李慧婷), Xue-Feng Zhang(张雪枫), Chang-Feng Li(李昌锋), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2024, 33(10): 107502.
[13] Spin-orbit torque effect in silicon-based sputtered Mn3Sn film
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒). Chin. Phys. B, 2024, 33(10): 107501.
[14] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[15] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
No Suggested Reading articles found!