Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 017503    DOI: 10.1088/1674-1056/ae101b
RAPID COMMUNICATION Prev   Next  

Anomalous Hall effect and Lifshitz transition in Fe3Sn2 nanosheets

Xue Yang(杨雪)1,2,†, Jijian Liu(刘继健)3,4,†, Xinyi Zheng(郑新义)1,2, Lei Xu(徐磊)1,2, Lihong Hu(胡利洪)1,2, Sicheng Zhou(周思成)1,2, Siyuan Zhou(周思远)1,2, Ximing Zhang(张栖铭)1,2, Bingbing Tong(仝冰冰)1,5, Jie Shen(沈洁)1,2,5, Zhaozheng Lyu(吕昭征)1,2, Xiunian Jing(景秀年)1, Fanming Qu(屈凡明)1,2,5, Peiling Li(李沛岭)1,2,5,‡, Jiadong Zhou(周家东)3,4,§, Guangtong Liu(刘广同)1,2,5,¶, and Li Lü(吕力)1,2,5
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Institute of Technology, Beijing 100081, China;
4 School of Physics, Beijing Institute of Technology, Beijing 100081, China;
5 Hefei National Laboratory, Hefei 230088, China
Abstract  Fe$_{3}$Sn$_{2}$, a ferromagnetic metal with a kagome lattice, serves as an ideal platform for exploring topological electronic states and Berry curvature due to its unique band structure. However, systematic reports on the transport properties of Fe$_{3}$Sn$_{2}$ nanosheets remain scarce. We present temperature-dependent transport property measurements of Fe$_{3}$Sn$_{2}$ nanosheets synthesized via chemical vapor deposition on Si/SiO$_{2}$ substrates. The samples exhibit a robust anomalous Hall effect from 40 K to 300 K, along with a magnetoresistance sign reversal at 40 K at high magnetic fields, indicating a spin reorientation from in-plane to out-of-plane. Notably, a sharp crossover in the dominant transport contribution from electrons to holes near 200 K is observed, accompanied by distinct anomalous Hall behaviors in the two regimes, indicating a temperature-induced Lifshitz transition within the multi-band system. This divergence is potentially linked to a topological reconstruction of the Fermi surface across the transition. Our findings highlight the tunability of topological transport in two-dimensional kagome magnets and provide new insights into the interplay between band topology, dimensionality and magnetic order.
Keywords:  kagome materials      anomalous Hall effect      ferromagnetism      Lifshitz transition  
Received:  01 August 2025      Revised:  30 September 2025      Accepted manuscript online:  07 October 2025
PACS:  75.50.Cc (Other ferromagnetic metals and alloys)  
  73.43.Qt (Magnetoresistance)  
  87.15.Zg (Phase transitions)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403503, 2022YFA1602802, 2023YFA1607400, and 2024YFA1613200) and Beijing Natural Science Foundation (Grant No. JQ23022). This work is supported by the Synergetic Extreme Condition User Facility and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302600).
Corresponding Authors:  Peiling Li, Jiadong Zhou, Guangtong Liu     E-mail:  cioran@iphy.ac.cn;jdzhou@bit.edu.cn;gtliu@iphy.ac.cn

Cite this article: 

Xue Yang(杨雪), Jijian Liu(刘继健), Xinyi Zheng(郑新义), Lei Xu(徐磊), Lihong Hu(胡利洪), Sicheng Zhou(周思成), Siyuan Zhou(周思远), Ximing Zhang(张栖铭), Bingbing Tong(仝冰冰), Jie Shen(沈洁), Zhaozheng Lyu(吕昭征), Xiunian Jing(景秀年), Fanming Qu(屈凡明), Peiling Li(李沛岭), Jiadong Zhou(周家东), Guangtong Liu(刘广同), and Li Lü(吕力) Anomalous Hall effect and Lifshitz transition in Fe3Sn2 nanosheets 2026 Chin. Phys. B 35 017503

[1] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[2] Liu Z, Bergholtz E J, Fan H and Lauchli A M 2012 Phys. Rev. Lett. 109 186805
[3] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[4] Wang Q, Lei H, Qi Y and Felser C 2024 Acc. Mater. Res. 5 786
[5] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[6] Li X, Koo J, Zhu Z, Behnia K and Yan B 2023 Nat. Commun. 14 1642
[7] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S-Y, Liu D, Liang A, Xu Q, Kroder J, Suß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[8] Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, Liu J, Weng H, Zhao L, Chen G, Jia X, Hu C, Ding Y, Zhao W, Gao Q, Li C, He S, Zhao L, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Dai X, Fang Z, Xu Z, Chen C and Zhou X J 2017 Nat. Commun. 8 15512
[9] Wu L, Chi S, Zuo H, Xu G, Zhao L, Luo Y and Zhu Z 2023 Npj Quantum Mater. 8 4
[10] Zheng Y, Chen W, Wan X and Xing D Y 2023 Chin. Phys. Lett. 40 097301
[11] Li Y, Wu D, Shu Y, Liu B, Stuhr U, Deng G, Stampfl A P J, Zhao L, Zhou X, Li S, Pokhriyal A, Ghosh H, Hong W and Luo H 2025 Chin. Phys. Lett. 42 067405
[12] Yuan M, Li Z, Zhang Q, Xia Z, Liu E and Liu Z 2023 Appl. Phys. Lett. 123 182402
[13] Wang X, Pan D, Zeng Q, Chen X, Wang H, Zhao D, Xu Z, Yang Q, Deng J, Zhai T, Wu G, Liu E and Zhao J 2021 Nanoscale 13 2601
[14] Wang X and Tan J 2023 Appl. Phys. Lett. 122 051901
[15] Wang X and Tan J 2022 Appl. Phys. Lett. 121 161903
[16] Fang S, Ye L, Ghimire M P, Kang M, Liu J, Han M, Fu L, Richter M, van den Brink J, Kaxiras E, Comin R and Checkelsky J G 2022 Phys. Rev. B 105 035107
[17] Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z, Jia S, Wang W and Hasan M Z 2018 Nature 562 91
[18] Wang Q, Sun S, Zhang X, Pang F and Lei H 2016 Phys. Rev. B 94 075135
[19] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[20] Wu P, Song J, Yu X, Wang Y, Xia K, Hong B, Zu L, Du Y, Vallobra P, Liu F, Torii S, Kamiyama T, Xiong Y and Zhao W 2021 Appl. Phys. Lett. 119 082401
[21] Zhang D, Hou Z and Mi W 2022 Appl. Phys. Lett. 120 232401
[22] Li H, Ding B, Chen J, Li Z, Hou Z, Liu E, Zhang H, Xi X, Wu G and Wang W 2019 Appl. Phys. Lett. 114 192408
[23] Wang Q, Yin Q and Lei H 2020 Chin. Phys. B 29 017101
[24] Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B and Zhang Z 2017 Adv. Mater. 29 1701144
[25] Tang J, Wu Y, Kong L, Wang W, Chen Y, Wang Y, Soh Y, Xiong Y, Tian M and Du H 2021 Natl. Sci. Rev. 8 nwaa200
[26] Du Q, Han M G, Liu Y, Ren W, Zhu Y and Petrovic C 2020 Adv. Quantum Technol. 3 2000058
[27] Lin Z, Choi J H, Zhang Q, Qin W, Yi S, Wang P, Li L, Wang Y, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho J H, Zeng C and Zhang Z 2018 Phys. Rev. Lett. 121 096401
[28] Cheng S, Wang B, Lyalin I, Bagues N, Bishop A J, McComb D W and Kawakami R K 2022 APL Mater. 10 061112
[29] Ren Z, Li H, Sharma S, Bhattarai D, Zhao H, Rachmilowitz B, Bahrami F, Tafti F, Fang S, Ghimire M P, Wang Z and Zeljkovic I 2022 Npj Quantum Mater. 7 109
[30] Zhu M, Li Q, Guo K, Chen B, He K, Yi C, Lu P, Li X, Lu J, Li J, Wu R, Liu X, Liu Y, Liao L, Li B and Duan X 2024 Nano Lett. 24 7483
[31] Wang Q, Sun S, Zhang X, Pang F and Lei H 2016 Phys. Rev. B 94 075135
[32] Huang S, Zhu L, Zhao Y, Watanabe K, Taniguchi T, Xiao J, Wang L, Mei J, Huang H, Zhang F, Wang M, Fu D and Zhang R 2025 Nat. Commun. 16 2866
[33] Zhang J, Ji W J, Xu J, Geng X Y, Zhou J, Gu Z B, Yao S H and Zhang S T 2017 Sci. Adv. 3 e1701473
[34] Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583
[35] Baibich M N, Broto J M, Fert A, Van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
[36] Wang L, Zhu J, Chen H, Wang H, Liu J, Huang Y X, Jiang B, Zhao J, Shi H, Tian G, Wang H, Yao Y, Yu D, Wang Z, Xiao C, Yang S A and Wu X 2024 Phys. Rev. Lett. 132 106601
[37] McKenzie R H 1998 Phys. Rev. B 57 11854
[38] Li Q, Wang B, Tang N, Li C, Yi E, Shen B, Guo D, Zhong D and Wang H 2023 Chin. Phys. Lett. 40 067101
[39] Lin Z 2018 Phys. Rev. Lett. 121 020403
[40] Tanaka H, Fujisawa Y, Kuroda K, Noguchi R, Sakuragi S, Bareille C, Smith B, Cacho C, Jung S W, Muro T, Okada Y and Kondo T 2020 Phys. Rev. B 101 161114
[41] Ekahana S A, Soh Y, Tamai A, Gosalbez-Martınez D, Yao M, Hunter A, Fan W, Wang Y, Li J, Kleibert A, Vaz C A F, Ma J, Lee H, Xiong Y, Yazyev O V, Baumberger F, Shi M and Aeppli G 2024 Nature 627 67
[42] Chen F C, Fei Y, Li S J, Wang Q, Luo X, Yan J, Lu W J, Tong P, Song W H, Zhu X B, Zhang L, Zhou H B, Zheng F W, Zhang P, Lichtenstein A L, Katsnelson M I, Yin Y, Hao N and Sun Y P 2020 Phys. Rev. Lett. 124 236601
[43] Lozano P M, Cardoso G, Aryal N, Nevola D, Gu G, Tsvelik A, Yin W and Li Q 2022 Phys. Rev. B 106 L081124
[44] Wu Y, Jo N H, Ochi M, Huang L, Mou D, Bud’ko S L, Canfield P C, Trivedi N, Arita R and Kaminski A 2015 Phys. Rev. Lett. 115 166602
[45] Mai D, Zhao J, Zhong C, Ye C, Zhao H, Zhang Y, Li J, Wang H, Sun X, Dai R, Wang Z, Rahman A, Wang X and Zhang Z 2025 Appl. Mater. Today 45 102794
[46] Tian Y, Ye L and Jin X 2009 Phys. Rev. Lett. 103 087206
[47] Iguchi S, Hanasaki N and Tokura Y 2007 Phys. Rev. Lett. 99 077202
[48] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kubler J, Felser C and Parkin S S P 2016 Sci. Adv. 2 e1501870
[49] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212
[50] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S-Y, Liu D, Liang A, Xu Q, Kroder J, Suß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[51] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, GonzalezHernandez R, Smejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003
[52] Miyasato T, Abe N, Fujii T, Asamitsu A, Onoda S, Onose Y, Nagaosa N and Tokura Y 2007 Phys. Rev. Lett. 99 086602
[53] Smit J 1955 Physica 21 877
[54] Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154
[1] Temperature-dependent magnetotransport properties of CoFe2O4/Pt heterostructure
Haomang He(何浩茫), Ruijie Xu(徐睿劼), Anke Song(宋安柯), Zhongqiang Chen(陈中强), and Xuefeng Wang(王学锋). Chin. Phys. B, 2026, 35(1): 017502.
[2] Corrigendum to “High-throughput discovery of kagome materials in transition metal oxide monolayers”
Renhong Wang(王人宏), Cong Wang(王聪), Ruixuan Li(李睿宣), Deping Guo(郭的坪), Jiaqi Dai(戴佳琦), Canbo Zong(宗灿波), Weihan Zhang(张伟涵), and Wei Ji(季威). Chin. Phys. B, 2025, 34(9): 099902.
[3] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[4] Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals
Yaofeng Xie(谢耀锋), Senhao Lv(吕森浩), Qi Qi(齐琦), Guojing Hu(胡国静), Ke Zhu(祝轲), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Ruwen Wang(王汝文), Chenyu Bai(白晨宇), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(8): 087303.
[5] Pressure-induced metallization and Lifshitz transition in quasi-one-dimensional TiSe3 single crystal
Zhenhai Yu(于振海), Yunguan Ye(叶运观), Pengtao Yang(杨芃焘), Yiming Wang(王弈铭), Liucheng Chen(陈刘城), Chenglin Li(李承霖), Jian Yuan(袁健), Ziyi Liu(刘子儀), Zhiwei Shen(申志伟), Shaojie Wang(王邵杰), Mingtao Li(李明涛), Chaoyang Chu(楚朝阳), Xia Wang(王霞), Jun Li(李俊), Lin Wang(王霖), Wenge Yang(杨文革), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2025, 34(8): 088102.
[6] Current density in anomalous Hall effect regime under weak scattering
Ning Dai(戴凝) and Bin Zhou(周斌). Chin. Phys. B, 2025, 34(7): 077301.
[7] Complex magnetic and transport properties of EuBi2 single crystal
Ping Su(苏平), Hui Liang(梁慧), Yi-Ran Li(李祎冉), Huan Wang(王欢), Na Li(李娜), Kai-Yuan Hu(胡开源), Ying Zhou(周颖), Dan-Dan Wu(吴丹丹), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), Jin-Jin Hong(洪锦锦), Xia Zhao(赵霞), Xue-Feng Sun(孙学峰), and Yi-Yan Wang(王义炎). Chin. Phys. B, 2025, 34(6): 067503.
[8] Angle-resolved photoemission spectroscopy study on transition-metal kagome materials
Jiangang Yang(杨鉴刚), Jianwei Huang(黄建伟), Lin Zhao(赵林), and X. J. Zhou(周兴江). Chin. Phys. B, 2025, 34(4): 047101.
[9] Robustness of ferromagnetism in van der Waals magnet Fe3GeTe2 to hydrostatic pressure
Yonglin Wang(王涌霖), Xu-Tao Zeng(曾旭涛), Bo Li(李博), Cheng Su(宿程), Takanori Hattori, Xian-Lei Sheng(胜献雷), and Wentao Jin(金文涛). Chin. Phys. B, 2025, 34(4): 046203.
[10] High-throughput discovery of kagome materials in transition metal oxide monolayers
Renhong Wang(王人宏), Cong Wang(王聪), Ruixuan Li(李睿宣), Deping Guo(郭的坪), Jiaqi Dai(戴佳琦), Canbo Zong(宗灿波), Weihan Zhang(张伟涵), and Wei Ji(季威). Chin. Phys. B, 2025, 34(4): 046801.
[11] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[12] Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction
Zhuangzhuang Qu(曲壮壮), Zhihao Chen(陈志豪), Xiangyan Han(韩香岩), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Wenjun Zhao(赵文俊), Kenji Watanabe, Takashi Taniguchi, Zhi-Gang Cheng(程智刚), Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2025, 34(3): 037201.
[13] Exploring Lifshitz transition and superconductivity in 3R-NbS2 under pressure
Kun Chen(陈坤), Xindeng Lv(吕心邓), Simin Li(李思敏), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037403.
[14] NaBH4 induces strong ferromagnetism of Bi2Fe4O9 at room temperature
Chong Wang(王冲), Guorong Liu(刘国荣), Xiaofeng Sun(孙小峰), Jinyuan Ma(马金元), Tao Xian(县涛), and Hua Yang(杨华). Chin. Phys. B, 2025, 34(12): 127503.
[15] Tunable anomalous Hall effect and anisotropic magnetism in In-doped TbMn6Sn6 kagome magnets
Detong Wu(吴德桐), Jianwei Qin(秦建伟), and Bing Shen(沈冰). Chin. Phys. B, 2025, 34(10): 107511.
No Suggested Reading articles found!