|
|
|
Anomalous Hall effect and Lifshitz transition in Fe3Sn2 nanosheets |
| Xue Yang(杨雪)1,2,†, Jijian Liu(刘继健)3,4,†, Xinyi Zheng(郑新义)1,2, Lei Xu(徐磊)1,2, Lihong Hu(胡利洪)1,2, Sicheng Zhou(周思成)1,2, Siyuan Zhou(周思远)1,2, Ximing Zhang(张栖铭)1,2, Bingbing Tong(仝冰冰)1,5, Jie Shen(沈洁)1,2,5, Zhaozheng Lyu(吕昭征)1,2, Xiunian Jing(景秀年)1, Fanming Qu(屈凡明)1,2,5, Peiling Li(李沛岭)1,2,5,‡, Jiadong Zhou(周家东)3,4,§, Guangtong Liu(刘广同)1,2,5,¶, and Li Lü(吕力)1,2,5 |
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Institute of Technology, Beijing 100081, China; 4 School of Physics, Beijing Institute of Technology, Beijing 100081, China; 5 Hefei National Laboratory, Hefei 230088, China |
|
|
|
|
Abstract Fe$_{3}$Sn$_{2}$, a ferromagnetic metal with a kagome lattice, serves as an ideal platform for exploring topological electronic states and Berry curvature due to its unique band structure. However, systematic reports on the transport properties of Fe$_{3}$Sn$_{2}$ nanosheets remain scarce. We present temperature-dependent transport property measurements of Fe$_{3}$Sn$_{2}$ nanosheets synthesized via chemical vapor deposition on Si/SiO$_{2}$ substrates. The samples exhibit a robust anomalous Hall effect from 40 K to 300 K, along with a magnetoresistance sign reversal at 40 K at high magnetic fields, indicating a spin reorientation from in-plane to out-of-plane. Notably, a sharp crossover in the dominant transport contribution from electrons to holes near 200 K is observed, accompanied by distinct anomalous Hall behaviors in the two regimes, indicating a temperature-induced Lifshitz transition within the multi-band system. This divergence is potentially linked to a topological reconstruction of the Fermi surface across the transition. Our findings highlight the tunability of topological transport in two-dimensional kagome magnets and provide new insights into the interplay between band topology, dimensionality and magnetic order.
|
Received: 01 August 2025
Revised: 30 September 2025
Accepted manuscript online: 07 October 2025
|
|
PACS:
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
| |
73.43.Qt
|
(Magnetoresistance)
|
| |
87.15.Zg
|
(Phase transitions)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403503, 2022YFA1602802, 2023YFA1607400, and 2024YFA1613200) and Beijing Natural Science Foundation (Grant No. JQ23022). This work is supported by the Synergetic Extreme Condition User Facility and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302600). |
Corresponding Authors:
Peiling Li, Jiadong Zhou, Guangtong Liu
E-mail: cioran@iphy.ac.cn;jdzhou@bit.edu.cn;gtliu@iphy.ac.cn
|
Cite this article:
Xue Yang(杨雪), Jijian Liu(刘继健), Xinyi Zheng(郑新义), Lei Xu(徐磊), Lihong Hu(胡利洪), Sicheng Zhou(周思成), Siyuan Zhou(周思远), Ximing Zhang(张栖铭), Bingbing Tong(仝冰冰), Jie Shen(沈洁), Zhaozheng Lyu(吕昭征), Xiunian Jing(景秀年), Fanming Qu(屈凡明), Peiling Li(李沛岭), Jiadong Zhou(周家东), Guangtong Liu(刘广同), and Li Lü(吕力) Anomalous Hall effect and Lifshitz transition in Fe3Sn2 nanosheets 2026 Chin. Phys. B 35 017503
|
[1] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 [2] Liu Z, Bergholtz E J, Fan H and Lauchli A M 2012 Phys. Rev. Lett. 109 186805 [3] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [4] Wang Q, Lei H, Qi Y and Felser C 2024 Acc. Mater. Res. 5 786 [5] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [6] Li X, Koo J, Zhu Z, Behnia K and Yan B 2023 Nat. Commun. 14 1642 [7] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S-Y, Liu D, Liang A, Xu Q, Kroder J, Suß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [8] Zhang Y, Wang C, Yu L, Liu G, Liang A, Huang J, Nie S, Sun X, Zhang Y, Shen B, Liu J, Weng H, Zhao L, Chen G, Jia X, Hu C, Ding Y, Zhao W, Gao Q, Li C, He S, Zhao L, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Dai X, Fang Z, Xu Z, Chen C and Zhou X J 2017 Nat. Commun. 8 15512 [9] Wu L, Chi S, Zuo H, Xu G, Zhao L, Luo Y and Zhu Z 2023 Npj Quantum Mater. 8 4 [10] Zheng Y, Chen W, Wan X and Xing D Y 2023 Chin. Phys. Lett. 40 097301 [11] Li Y, Wu D, Shu Y, Liu B, Stuhr U, Deng G, Stampfl A P J, Zhao L, Zhou X, Li S, Pokhriyal A, Ghosh H, Hong W and Luo H 2025 Chin. Phys. Lett. 42 067405 [12] Yuan M, Li Z, Zhang Q, Xia Z, Liu E and Liu Z 2023 Appl. Phys. Lett. 123 182402 [13] Wang X, Pan D, Zeng Q, Chen X, Wang H, Zhao D, Xu Z, Yang Q, Deng J, Zhai T, Wu G, Liu E and Zhao J 2021 Nanoscale 13 2601 [14] Wang X and Tan J 2023 Appl. Phys. Lett. 122 051901 [15] Wang X and Tan J 2022 Appl. Phys. Lett. 121 161903 [16] Fang S, Ye L, Ghimire M P, Kang M, Liu J, Han M, Fu L, Richter M, van den Brink J, Kaxiras E, Comin R and Checkelsky J G 2022 Phys. Rev. B 105 035107 [17] Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z, Jia S, Wang W and Hasan M Z 2018 Nature 562 91 [18] Wang Q, Sun S, Zhang X, Pang F and Lei H 2016 Phys. Rev. B 94 075135 [19] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 [20] Wu P, Song J, Yu X, Wang Y, Xia K, Hong B, Zu L, Du Y, Vallobra P, Liu F, Torii S, Kamiyama T, Xiong Y and Zhao W 2021 Appl. Phys. Lett. 119 082401 [21] Zhang D, Hou Z and Mi W 2022 Appl. Phys. Lett. 120 232401 [22] Li H, Ding B, Chen J, Li Z, Hou Z, Liu E, Zhang H, Xi X, Wu G and Wang W 2019 Appl. Phys. Lett. 114 192408 [23] Wang Q, Yin Q and Lei H 2020 Chin. Phys. B 29 017101 [24] Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B and Zhang Z 2017 Adv. Mater. 29 1701144 [25] Tang J, Wu Y, Kong L, Wang W, Chen Y, Wang Y, Soh Y, Xiong Y, Tian M and Du H 2021 Natl. Sci. Rev. 8 nwaa200 [26] Du Q, Han M G, Liu Y, Ren W, Zhu Y and Petrovic C 2020 Adv. Quantum Technol. 3 2000058 [27] Lin Z, Choi J H, Zhang Q, Qin W, Yi S, Wang P, Li L, Wang Y, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho J H, Zeng C and Zhang Z 2018 Phys. Rev. Lett. 121 096401 [28] Cheng S, Wang B, Lyalin I, Bagues N, Bishop A J, McComb D W and Kawakami R K 2022 APL Mater. 10 061112 [29] Ren Z, Li H, Sharma S, Bhattarai D, Zhao H, Rachmilowitz B, Bahrami F, Tafti F, Fang S, Ghimire M P, Wang Z and Zeljkovic I 2022 Npj Quantum Mater. 7 109 [30] Zhu M, Li Q, Guo K, Chen B, He K, Yi C, Lu P, Li X, Lu J, Li J, Wu R, Liu X, Liu Y, Liao L, Li B and Duan X 2024 Nano Lett. 24 7483 [31] Wang Q, Sun S, Zhang X, Pang F and Lei H 2016 Phys. Rev. B 94 075135 [32] Huang S, Zhu L, Zhao Y, Watanabe K, Taniguchi T, Xiao J, Wang L, Mei J, Huang H, Zhang F, Wang M, Fu D and Zhang R 2025 Nat. Commun. 16 2866 [33] Zhang J, Ji W J, Xu J, Geng X Y, Zhou J, Gu Z B, Yao S H and Zhang S T 2017 Sci. Adv. 3 e1701473 [34] Salamon M B and Jaime M 2001 Rev. Mod. Phys. 73 583 [35] Baibich M N, Broto J M, Fert A, Van Dau F N, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472 [36] Wang L, Zhu J, Chen H, Wang H, Liu J, Huang Y X, Jiang B, Zhao J, Shi H, Tian G, Wang H, Yao Y, Yu D, Wang Z, Xiao C, Yang S A and Wu X 2024 Phys. Rev. Lett. 132 106601 [37] McKenzie R H 1998 Phys. Rev. B 57 11854 [38] Li Q, Wang B, Tang N, Li C, Yi E, Shen B, Guo D, Zhong D and Wang H 2023 Chin. Phys. Lett. 40 067101 [39] Lin Z 2018 Phys. Rev. Lett. 121 020403 [40] Tanaka H, Fujisawa Y, Kuroda K, Noguchi R, Sakuragi S, Bareille C, Smith B, Cacho C, Jung S W, Muro T, Okada Y and Kondo T 2020 Phys. Rev. B 101 161114 [41] Ekahana S A, Soh Y, Tamai A, Gosalbez-Martınez D, Yao M, Hunter A, Fan W, Wang Y, Li J, Kleibert A, Vaz C A F, Ma J, Lee H, Xiong Y, Yazyev O V, Baumberger F, Shi M and Aeppli G 2024 Nature 627 67 [42] Chen F C, Fei Y, Li S J, Wang Q, Luo X, Yan J, Lu W J, Tong P, Song W H, Zhu X B, Zhang L, Zhou H B, Zheng F W, Zhang P, Lichtenstein A L, Katsnelson M I, Yin Y, Hao N and Sun Y P 2020 Phys. Rev. Lett. 124 236601 [43] Lozano P M, Cardoso G, Aryal N, Nevola D, Gu G, Tsvelik A, Yin W and Li Q 2022 Phys. Rev. B 106 L081124 [44] Wu Y, Jo N H, Ochi M, Huang L, Mou D, Bud’ko S L, Canfield P C, Trivedi N, Arita R and Kaminski A 2015 Phys. Rev. Lett. 115 166602 [45] Mai D, Zhao J, Zhong C, Ye C, Zhao H, Zhang Y, Li J, Wang H, Sun X, Dai R, Wang Z, Rahman A, Wang X and Zhang Z 2025 Appl. Mater. Today 45 102794 [46] Tian Y, Ye L and Jin X 2009 Phys. Rev. Lett. 103 087206 [47] Iguchi S, Hanasaki N and Tokura Y 2007 Phys. Rev. Lett. 99 077202 [48] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kubler J, Felser C and Parkin S S P 2016 Sci. Adv. 2 e1501870 [49] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [50] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S-Y, Liu D, Liang A, Xu Q, Kroder J, Suß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [51] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, GonzalezHernandez R, Smejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003 [52] Miyasato T, Abe N, Fujii T, Asamitsu A, Onoda S, Onose Y, Nagaosa N and Tokura Y 2007 Phys. Rev. Lett. 99 086602 [53] Smit J 1955 Physica 21 877 [54] Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|