| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Unconventional stabilization mechanisms and emergent superconductivity in scandium polychlorides under extreme conditions |
| Ziji Shao(邵子霁)1, Maosheng Miao(苗茂生)2, Wendi Zhao(赵文迪)3, Mengxi Wang(王梦溪)4, Yingmei Zhu(朱英梅)4, Changqiu Yu(于长秋)1, Defang Duan(段德芳)3,†, and Tiejun Zhou(周铁军)1,‡ |
1 College of Electronics And Information, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Department of Chemistry and Biochemistry, California State University Northridge, Los Angeles, California 91330, United States; 3 International Center for Computational Method and Software and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 4 State Key Laboratory for Spintronics Devices and Technologies, Hangzhou 311300, China |
|
|
|
|
Abstract Using first-principles evolutionary crystal structure prediction, we systematically investigate scandium polychlorides across 50–300 GPa, predicting multiple thermodynamically stable phases ScCl, ScCl2, ScCl3, ScCl5, and ScCl7 with unconventional stoichiometries. The exceptional stability of these compounds stems from the mutually compatible crystal orbitals of the Sc and Cl sublattices, strong ionic interactions, and the formation of Cl–Cl homobonds. These factors play critical roles in stabilizing scandium chloride compounds with various unconventional stoichiometries. Notably highpressure novel ScCl phases with P63/mmc and Pm-3m symmetries can be metastable at ambient pressure upon decompression and convert into superconductive electrides. Pm-3-ScCl7 exhibits significant pressure-modulated superconductivity, featuring an enhancement of Tc to 10.91 K at a low pressure of 75 GPa. In addition, the universal superconductivity found in the Pm-3 structured chlorides suggests a promising structural prototype for pressure-tunable superconductors.
|
Received: 25 June 2025
Revised: 15 August 2025
Accepted manuscript online: 08 September 2025
|
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
| |
74.62.Fj
|
(Effects of pressure)
|
| |
81.40.Vw
|
(Pressure treatment)
|
| |
91.60.Gf
|
(High-pressure behavior)
|
|
| Fund: This work was supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (Grant No. 2022C01053), Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ23A040010), the Open Fund of the State Key Laboratory of Spintronics Devices and Technologies (Grant No. SPL-2404), Zhejiang Provincial Natural Science Foundation of China (Grant No. Y24F050044). D. D. acknowledges the National Natural Science Foundation of China (Grant Nos. 12274169 and 12122405). M. M. acknowledges NSF DMR 1848141, OAC 2117956, the Camille and Henry Dreyfus Foundation, and CSU RSCA grants. Parts of the calculations were performed in the High Performance Computing Center (HPCC) of TianHe-1(A) at the National Supercomputer Center in Tianjin. |
Corresponding Authors:
Defang Duan, Tiejun Zhou
E-mail: duandf@jlu.edu.cn;tjzhou@hdu.edu.cn
|
Cite this article:
Ziji Shao(邵子霁), Maosheng Miao(苗茂生), Wendi Zhao(赵文迪), Mengxi Wang(王梦溪), Yingmei Zhu(朱英梅), Changqiu Yu(于长秋), Defang Duan(段德芳), and Tiejun Zhou(周铁军) Unconventional stabilization mechanisms and emergent superconductivity in scandium polychlorides under extreme conditions 2025 Chin. Phys. B 34 116201
|
[1] Miao M S, Sun Y H, Zurek E and Lin H Q 2020 Nat. Rev. Chem. 4 508 [2] Froyen S and Cohen M L 1984 Phys. Rev. B 29 3770 [3] Sims C E, Barrera G D, Allan N L and Mackrodt W C 1998 Phys. Rev. B 57 11164 [4] Válgoma J A, Perez-Mato J M, García A, Schwarz K and Blaha P 2002 Phys. Rev. B 65 134104 [5] Leger J M and Atouf A 1992 J. Phys.: Condens. Mat. 4 357 [6] Wan B, Lu Y F, Xiao Z W, Muraba Y, Kim J W, Huang D J, Wu L L, Gou H Y, Zhang J W and Gao F M 2018 NPJ Comput. Mater. 4 1 [7] McGuire M A, Clark G, Kc S, Chance W M, Jellison G E, Cooper V R, Xu X D and Sales B C 2017 Phys. Rev. Mater. 1 014001 [8] Cao H B, Banerjee A, Yan J Q, Bridges C A, Lumsden M D, Mandrus D G, Tennant D A, Chakoumakos B C and Nagler S E 2016 Phys. Rev. B 93 134423 [9] Vologzhanina A V, Pushkin D V and Serezhkin V N 2006 Russ. J. Coord. Chem. 32 815 [10] McGuire and A M 2017 Crystals 7 121 [11] ZhangW, Oganov A R, Zhu Q, Lobanov S S, Stavrou E and Goncharov A F 2016 Sci. Rep. 6 26265 [12] Zhang W W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B and Konôpková Z 2013 Science 342 1502 [13] Yang Q P, Zhao K X, Liu H Y and Zhang S T 2021 J. Phys. Chem. Lett. 12 5850 [14] Kong J, Shi K Y, Oganov A R, Zhang J Q, Su L and Dong X 2024 Matter Radiat. Extremes 9 067803 [15] Kong J, Su L, Cui H X, Ding H R, Hou J Y, Chi C X, Liu S Y, Zhou X F, Wang H T and Dong X 2024 Chin. Phys. Lett. 41 107101 [16] Yu H L and Chen Y 2021 J. Phys.: Condens. Mat. 33 215401 [17] Sun Y H and Miao M S 2023 Chem 9 443 [18] Sun Y, Zhao L, Pickard C J, Hemley R J, Zheng Y and Miao M 2023 Proc. Natl. Acad. Sci. USA 120 e2218405120 [19] Ye X Q, Zarifi N, Zurek E, Hoffmann R and Ashcroft N W 2018 J. Phys. Chem. C 122 6298 [20] Qian S F, Sheng XW, Yan X Z, Chen Y M and Song B 2017 Phys. Rev. B 96 094513 [21] Abe K 2017 Phys. Rev. B 96 144108 [22] Rahm M, Cammi R, Ashcroft NWand Hoffmann R 2019 J. Am. Chem. Soc. 141 10253 [23] Li P F, Gao G Y and Ma Y M 2012 J. Chem. Phys. 137 064502 [24] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704 [25] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172 [26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [27] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15 [28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [29] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Mat. 21 395502 [30] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616 [31] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 [32] Dalladay Simpson P, Binns J, Peña Alvarez M, Donnelly M E, Greenberg E, Prakapenka V, Chen X J, Gregoryanz E and Howie R T 2019 Nat. Commun. 10 1134 [33] Akahama Y, Fujihisa H and Kawamura H 2005 Phys. Rev. Lett. 94 195503 [34] Dronskowski R and Bloechl P E 1993 J. Phys. Chem. 97 8617 [35] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 J. Comput. Chem. 37 1030 [36] Zarifi N, Liu H Y, Tse J S and Zurek E 2018 J. Phys. Chem. C 122 2941 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|