Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 116201    DOI: 10.1088/1674-1056/ae0431
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Unconventional stabilization mechanisms and emergent superconductivity in scandium polychlorides under extreme conditions

Ziji Shao(邵子霁)1, Maosheng Miao(苗茂生)2, Wendi Zhao(赵文迪)3, Mengxi Wang(王梦溪)4, Yingmei Zhu(朱英梅)4, Changqiu Yu(于长秋)1, Defang Duan(段德芳)3,†, and Tiejun Zhou(周铁军)1,‡
1 College of Electronics And Information, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Department of Chemistry and Biochemistry, California State University Northridge, Los Angeles, California 91330, United States;
3 International Center for Computational Method and Software and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
4 State Key Laboratory for Spintronics Devices and Technologies, Hangzhou 311300, China
Abstract  Using first-principles evolutionary crystal structure prediction, we systematically investigate scandium polychlorides across 50–300 GPa, predicting multiple thermodynamically stable phases ScCl, ScCl2, ScCl3, ScCl5, and ScCl7 with unconventional stoichiometries. The exceptional stability of these compounds stems from the mutually compatible crystal orbitals of the Sc and Cl sublattices, strong ionic interactions, and the formation of Cl–Cl homobonds. These factors play critical roles in stabilizing scandium chloride compounds with various unconventional stoichiometries. Notably highpressure novel ScCl phases with P63/mmc and Pm-3m symmetries can be metastable at ambient pressure upon decompression and convert into superconductive electrides. Pm-3-ScCl7 exhibits significant pressure-modulated superconductivity, featuring an enhancement of Tc to 10.91 K at a low pressure of 75 GPa. In addition, the universal superconductivity found in the Pm-3 structured chlorides suggests a promising structural prototype for pressure-tunable superconductors.
Keywords:  high pressure      first-principles calculation      crystal structure prediction  
Received:  25 June 2025      Revised:  15 August 2025      Accepted manuscript online:  08 September 2025
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  74.62.Fj (Effects of pressure)  
  81.40.Vw (Pressure treatment)  
  91.60.Gf (High-pressure behavior)  
Fund: This work was supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (Grant No. 2022C01053), Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ23A040010), the Open Fund of the State Key Laboratory of Spintronics Devices and Technologies (Grant No. SPL-2404), Zhejiang Provincial Natural Science Foundation of China (Grant No. Y24F050044). D. D. acknowledges the National Natural Science Foundation of China (Grant Nos. 12274169 and 12122405). M. M. acknowledges NSF DMR 1848141, OAC 2117956, the Camille and Henry Dreyfus Foundation, and CSU RSCA grants. Parts of the calculations were performed in the High Performance Computing Center (HPCC) of TianHe-1(A) at the National Supercomputer Center in Tianjin.
Corresponding Authors:  Defang Duan, Tiejun Zhou     E-mail:  duandf@jlu.edu.cn;tjzhou@hdu.edu.cn

Cite this article: 

Ziji Shao(邵子霁), Maosheng Miao(苗茂生), Wendi Zhao(赵文迪), Mengxi Wang(王梦溪), Yingmei Zhu(朱英梅), Changqiu Yu(于长秋), Defang Duan(段德芳), and Tiejun Zhou(周铁军) Unconventional stabilization mechanisms and emergent superconductivity in scandium polychlorides under extreme conditions 2025 Chin. Phys. B 34 116201

[1] Miao M S, Sun Y H, Zurek E and Lin H Q 2020 Nat. Rev. Chem. 4 508
[2] Froyen S and Cohen M L 1984 Phys. Rev. B 29 3770
[3] Sims C E, Barrera G D, Allan N L and Mackrodt W C 1998 Phys. Rev. B 57 11164
[4] Válgoma J A, Perez-Mato J M, García A, Schwarz K and Blaha P 2002 Phys. Rev. B 65 134104
[5] Leger J M and Atouf A 1992 J. Phys.: Condens. Mat. 4 357
[6] Wan B, Lu Y F, Xiao Z W, Muraba Y, Kim J W, Huang D J, Wu L L, Gou H Y, Zhang J W and Gao F M 2018 NPJ Comput. Mater. 4 1
[7] McGuire M A, Clark G, Kc S, Chance W M, Jellison G E, Cooper V R, Xu X D and Sales B C 2017 Phys. Rev. Mater. 1 014001
[8] Cao H B, Banerjee A, Yan J Q, Bridges C A, Lumsden M D, Mandrus D G, Tennant D A, Chakoumakos B C and Nagler S E 2016 Phys. Rev. B 93 134423
[9] Vologzhanina A V, Pushkin D V and Serezhkin V N 2006 Russ. J. Coord. Chem. 32 815
[10] McGuire and A M 2017 Crystals 7 121
[11] ZhangW, Oganov A R, Zhu Q, Lobanov S S, Stavrou E and Goncharov A F 2016 Sci. Rep. 6 26265
[12] Zhang W W, Oganov A R, Goncharov A F, Zhu Q, Boulfelfel S E, Lyakhov A O, Stavrou E, Somayazulu M, Prakapenka V B and Konôpková Z 2013 Science 342 1502
[13] Yang Q P, Zhao K X, Liu H Y and Zhang S T 2021 J. Phys. Chem. Lett. 12 5850
[14] Kong J, Shi K Y, Oganov A R, Zhang J Q, Su L and Dong X 2024 Matter Radiat. Extremes 9 067803
[15] Kong J, Su L, Cui H X, Ding H R, Hou J Y, Chi C X, Liu S Y, Zhou X F, Wang H T and Dong X 2024 Chin. Phys. Lett. 41 107101
[16] Yu H L and Chen Y 2021 J. Phys.: Condens. Mat. 33 215401
[17] Sun Y H and Miao M S 2023 Chem 9 443
[18] Sun Y, Zhao L, Pickard C J, Hemley R J, Zheng Y and Miao M 2023 Proc. Natl. Acad. Sci. USA 120 e2218405120
[19] Ye X Q, Zarifi N, Zurek E, Hoffmann R and Ashcroft N W 2018 J. Phys. Chem. C 122 6298
[20] Qian S F, Sheng XW, Yan X Z, Chen Y M and Song B 2017 Phys. Rev. B 96 094513
[21] Abe K 2017 Phys. Rev. B 96 144108
[22] Rahm M, Cammi R, Ashcroft NWand Hoffmann R 2019 J. Am. Chem. Soc. 141 10253
[23] Li P F, Gao G Y and Ma Y M 2012 J. Chem. Phys. 137 064502
[24] Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704
[25] Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Mat. 21 395502
[30] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[31] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[32] Dalladay Simpson P, Binns J, Peña Alvarez M, Donnelly M E, Greenberg E, Prakapenka V, Chen X J, Gregoryanz E and Howie R T 2019 Nat. Commun. 10 1134
[33] Akahama Y, Fujihisa H and Kawamura H 2005 Phys. Rev. Lett. 94 195503
[34] Dronskowski R and Bloechl P E 1993 J. Phys. Chem. 97 8617
[35] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 J. Comput. Chem. 37 1030
[36] Zarifi N, Liu H Y, Tse J S and Zurek E 2018 J. Phys. Chem. C 122 2941
[1] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[2] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[3] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[4] Pressure-induced amorphization and metallization in orthorhombic SiP
Qiru Zeng(曾琪茹), Youjun Zhang(张友君), Yukai Zhuang(庄毓凯), Linfei Yang(杨林飞), Qiming Wang(王齐明), and Yi Sun(孙熠). Chin. Phys. B, 2025, 34(9): 096102.
[5] Tunable thermal conductivity and mechanical properties of metastable silicon by phase engineering
Guoshuai Du(杜国帅), Yubing Du(杜玉冰), Jiaxin Ming(明嘉欣), Zhixi Zhu(朱芷希), Jiaohui Yan(闫皎辉), Jiayin Li(李嘉荫), Tiansong Zhang(张天颂), Lina Yang(杨哩娜), Ke Jin(靳柯), and Yabin Chen(陈亚彬). Chin. Phys. B, 2025, 34(9): 096401.
[6] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[7] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[8] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[9] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[10] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[11] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[12] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[13] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[14] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[15] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
No Suggested Reading articles found!