|
|
|
Unconventional superconductivity in Cr-based nitride La3Cr10-xN11 |
| M Y Zou(邹牧远)1, J C Jiao(焦嘉琛)1, K W Chen(陈锴文)1, C Y Jiang(姜程予)1, C S Chen(陈长胜)1, X Li(李鑫)1, Q Wu(吴琼)1, N Y Zhang(张宁远)1, O O Bernal2, P C Ho3, A Koda4,5, D E MacLaughlin6, and L Shu(殳蕾)1,7,† |
1 State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China; 2 Department of Physics and Astronomy, California State University, Los Angeles, California 90032, USA; 3 Department of Physics, California State University, Fresno, California 93740, USA; 4 Muon Science Laboratory and Condensed Matter Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan; 5 Department of Materials Structure Science, The Graduate University for Advanced Studies (Sokendai), Tsukuba, Ibaraki 305-0801, Japan; 6 Department of Physics and Astronomy, University of California, Riverside, California 92521, USA; 7 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China |
|
|
|
|
Abstract Magnetization, specific heat, and muon spin relaxation (μSR) experiments have been carried out on the Cr-based nitride superconductor La$_3$Cr$_{10-x}$N$_{11}$, which exhibits a number of unconventional superconducting properties. The susceptibility $\chi(T)$ shows nearly perfect superconducting diamagnetism ($4\pi\chi(T=0) \approx -1$) and a remarkably high upper critical field $\mu_0H_{\rm c2} = 11.2$~T. The specific heat displays activated exponential behavior $\exp(-\varDelta_0/k_{\rm B}T)$, together with a large and field-dependent residual Sommerfeld coefficient. Transverse-field muon spin relaxation (μSR) measurements suggest s+s-wave or p-wave pairing symmetry, ruling out single s-wave pairing. Zero-field μSR yields no statistically significant evidence for time reversal symmetry breaking (TRSB), and places an upper bound of 1.5(1.3)~ms$^{-1}$ on any TRSB-induced muon relaxation rate at $T = 0$. Our results suggest that the unconventional superconductivity in $Ln_3\rm Cr_{10-x}N_{11}$, $Ln ={\rm La}$ and Pr, is mainly due to Cr 3d electrons and is similar in both compounds, whereas Pr 4f electrons are primarily responsible for the TRSB superconductivity observed in Pr$_3$Cr$_{10-x}$N$_{11}$.
|
Received: 05 July 2025
Revised: 10 August 2025
Accepted manuscript online: 28 August 2025
|
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
| |
74.70.Tx
|
(Heavy-fermion superconductors)
|
| |
76.75.+i
|
(Muon spin rotation and relaxation)
|
|
| Fund: We are grateful to G. D. Morris, B. Hitti, and D. Arsenau of the TRIUMF CMMS and the staff of J-PARC S1 (Experiment No. 2024A0208) for their valuable help during the SR experiments. This work was funded by the National Key Research and Development Program of China (Grant No. 2022YFA1402203), the National Natural Science Foundations of China (Grant No. 12174065), the Innovation Program for Quantum Science and Technology (Grant No. 2024ZD0300104), and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01). |
Corresponding Authors:
L Shu
E-mail: Leishu@fudan.edu.cn
|
Cite this article:
M Y Zou(邹牧远), J C Jiao(焦嘉琛), K W Chen(陈锴文), C Y Jiang(姜程予), C S Chen(陈长胜), X Li(李鑫), Q Wu(吴琼), N Y Zhang(张宁远), O O Bernal, P C Ho, A Koda, D E MacLaughlin, and L Shu(殳蕾) Unconventional superconductivity in Cr-based nitride La3Cr10-xN11 2025 Chin. Phys. B 34 117104
|
[1] Emery V J and Kivelson S A 1995 Nature 374 434 [2] Lee P A 1999 Phys. C 317–318 194 [3] Norman M R and Pépin C 2003 Rep. Prog. Phys. 66 1547 [4] Kotliar G and Liu J L 1988 Phys. Rev. B 38 5142 [5] Chen KW, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X,Wu Q, Zhang N Y, Guo Y F and Shu L 2024 Phys. Rev. Lett. 25 256503 [6] Khim S, Landaeta J F, Banda J, Bannor N, Brando M, Brydon P M R, Hafner D, Küchler R, Cardoso-Gil R, Stockert U, Mackenzie A P, Agterberg D F, Geibel C and Hassinger E 2021 Science 373 1012[7] Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802 [8] Zhang J, Ding Z F, Tan C, Huang K, Bernal O O, Ho P C, Morris G D, Hillier A D, Biswas P K, Cottrell S P, Xiang H, Yao X, MacLaughlin D E and Shu L 2018 Sci. Adv. 4 eaao5235 [9] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett. 58 908 [10] Maeda H, Tanaka Y, FukutomiMand Asano T 1988 Jpn. J. Appl. Phys. 27 L209 [11] Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761 [12] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W and Schäfer H1979 Phys. Rev. Lett. 43 1892 [13] Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189 [14] Gumeniuk R, Schnelle W, Rosner H, Nicklas M, Leithe-Jasper A and Grin Y 2008 Phys. Rev. Lett. 100 017002 [15] Maisuradze A, Nicklas M, Gumeniuk R, Baines C, SchnelleW, Rosner H, Leithe-Jasper A, Grin Y and Khasanov R 2009 Phys. Rev. Lett. 103 147002 [16] Maisuradze A, SchnelleW, Khasanov R, Gumeniuk R, Nicklas M, Rosner H, Leithe-Jasper A, Grin Y, Amato A and Thalmeier P 2010 Phys. Rev. B 82 024524 [17] Maple M B, Henkie Z, Yuhasz W M, Ho P C, Yanagisawa T, Sayles T A, Butch N P, Jeffries J R and Pietraszko A 2007 J. Magn. Magn. Mater. 310 182 [18] Aoki Y, Tsuchiya A, Kanayama T, Saha S R, Sugawara H, Sato H, Higemoto W, Koda A, Ohishi K, Nishiyama K and Kadono R 2003 Phys. Rev. Lett. 91 067003 [19] Tee X Y, Luo H G, Xiang T, Vandervelde D, Salamon M B, Sugawara H, Sato H, Panagopoulos C and Chia E E M2012 Phys. Rev. B 86 064518 [20] Sigrist M and Ueda K 1991 Rev. Mod. Phys. 63 239 [21] Norman M R 2011 Science 332 196 [22] Keller L, White J S, Frontzek M, Babkevich P, Susner M A, Sims Z C, Sefat A S, Rønnow H M and Rüegg C 2015 Phys. Rev. B 91 020409 [23] Kotegawa H, Nakahara S, Akamatsu R, Tou H, Sugawara H and Harima H 2015 Phys. Rev. Lett. 114 117002 [24] Matsuda M, Lin F K, Yu R, Cheng J G,WuW, Sun J P, Zhang J H, Sun P J, Matsubayashi K, Miyake T, Kato T, Yan J Q, Stone M B, Si Q M, Luo J L and Uwatoko Y 2018 Phys. Rev. X 8 031017 [25] Chandrasekhar B S 1962 Appl. Phys. Lett. 1 7 [26] Clogston A M 1962 Phys. Rev. Lett. 9 266 [27] Shao Y T, Wu X X, Wang L, Shi Y G, Hu J P adn Luo J L 2018 Europhys. Lett. 123 57001 [28] Adroja D T, Bhattacharyya A, Telling M, Feng Yu, Smidman M, Pan B, Zhao J, Hillier A D, Pratt F L and Strydom A M 2015 Phys. Rev. B 92 134505 [29] Zhi H Z, Imai T, Ning F L, Bao J K and Cao G H 2015 Phys. Rev. Lett. 114 147004 [30] Yang J, Tang Z T, Cao G H and Zheng G Q 2015 Phys. Rev. Lett. 115 147002 [31] Luo J, Yang J, Zhou R, Mu Q G, Liu T, Ren Zhi an, Yi C J, Shi Y G and Zheng G Q 2019 Phys. Rev. Lett. 123 047001 [32] Shu L, Higemoto W, Aoki Y, Hillier A D, Ohishi K, Ishida K, Kadono R, Koda A, Bernal O O, MacLaughlin D E, Tunashima Y, Yonezawa Y, Sanada S, Kikuchi D, Sato H, Sugawara H, Ito T U and Maple M B 2011 Phys. Rev. B 83 100504 [33] Sajilesh K P, Singh D, Biswas P K, Hillier A D and Singh R P 2018 Phys. Rev. B 98 214505 [34] WuW, Liu K, Li Y J, Yu Z H,Wu D S, Shao Y T, Na S H, Li G, Huang R Z, Xiang T and Luo J L 2019 Natl. Sci. Rev. 7 21 [35] Chen C S, Wu Q, Zou M Y, Zhu Z H, Yang Y X, Tan C, Hillier A D, Chang J, Luo J L, Wu W and Shu L 2024 npj Quantum Mater. 9 22 [36] Li Y J,WuW, Liu K, Yu Z H,Wu D S, Shao Y T, Na S H, Li G, Zheng P and Xiang T and Luo J L 2020 Europhys. Lett. 128 67002 [37] Blundell S J 1999 Contemp. Phys. 40 175 [38] Yaouanc A. and Dalmas de Réotier P 2011 Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter (New York: Oxford University Press) [39] Amato A 1997 Rev. Mod. Phys. 69 1119 [40] Luke G M, Fudamoto Y, Kojima K M, Larkin M I, Merrin J, Nachumi B, Uemura Y J, Maeno Y, Mao Z Q, Mori H and Nakamura H 1998 Nature 394 558 [41] Hillier A D, Quintanilla J, Mazidian B, Annett J F and Cywinski R 2012 Phys. Rev. Lett. 109 097001 [42] Sonier J E, Brewer J H and Kiefl R F 2000 Rev. Mod. Phys. 72 769 [43] Shu L, MacLaughlin D E, Varma C M, Bernal O O, Ho P C, Fukuda R H, Shen X P and Maple M B 2014 Phys. Rev. Lett. 113 166401 [44] Ding Z F, Zhang J, Tan C, Huang K, Chen Q Y, Lum I, Bernal O O, Ho P C, MacLaughlin D E, Maple M B and Shu L 2019 Phys. Rev. B 99 035136 [45] Suter A and Wojek B M 2012 Phys. Procedia 30 69 [46] Ashcroft N W and Mermin N D 1976 Solid State Physics (Harcourt College Publishers) p. 739 [47] Singh D, Sajilesh K P, Marik Sourav, Hillier A D and Singh R P 2019 Phys. Rev. B 99 014516 [48] Shang T, Ghosh S K, Zhao J Z, Chang L J, Baines C, Lee M K, Gawryluk D J, Shi M, Medarde M, Quintanilla J and Shiroka T 2020 Phys. Rev. B 102 020503 [49] Aoki D, Brison J P, Flouquet J, Ishida K, Knebel G, Tokunaga Y and Yanase Y 2022 J. Phys.: Condens. Matter 34 243002 [50] Hardy F, Aoki D, Meingast C, Schweiss P, Burger P, von Löhneysen H and Flouquet J 2011 Phys. Rev. B 83 195107 [51] Reference [38], Appendix A.2 [52] This is a crude approximation. See, e.g., Ref. [38], Chapter 11, for more detail [53] Sonier J E 2007 Rep. Prog. Phys. 70 1717 [54] Michael T 1975 Introduction to Superconductivity 2nd Edn. (McGraw- Hill) [55] Khasanov R, Conder K, Pomjakushina E, Amato A, Baines C, Bukowski Z, Karpinski J, Katrych S, Klauss H H, Luetkens H, Shengelaya A and Zhigadlo N D 2008 Phys. Rev. B 78 220510 [56] Carrington A and Manzano F 2003 Physica C 385 205 [57] Hillier A D, Quintanilla J and Cywinski R 2009 Phys. Rev. Lett. 102 117007 [58] Luke G M, Keren A, Le L P,WuWD, Uemura Y J, Bonn D A, Taillefer L and Garrett J D 1993 Phys. Rev. Lett. 71 1466 [59] Uemura Y J, Nishiyama K, Yamazaki T and Nakai R 1981 Solid State Commun. 39 461 [60] Zhang J, Ding Z F, Huang K, Tan C, Hillier A D, Biswas P K, MacLaughlin D E and Shu L 2019 Phys. Rev. B 100 024508 [61] 1988 Physica Reference Manual (TRIUMF 4004Wesbrook Mall, Vancouver, B.C., Canada V6T 2A3) [62] Broil S and Jeitschko W 1995 Z. Naturforsch. 50b 905 [63] Leggett A J 1975 Rev. Mod. Phys. 47 331 [64] Bouquet F, Wang Y, Fisher R A, Hinks D G, Jorgensen J D, Junod A and Phillips N E 2001 Europhys. Lett. 56 856 [65] Jiao L, Howard S, Ran S, Wang Z, Rodriguez J O, Sigrist M, Wang Z, Butch N P and Madhavan V 2020 Nature 579 523 [66] Ran S, Eckberg C, Ding Q P, Furukawa Y, Metz T, Saha S R, Liu IL, Zic M, Kim H, Paglione J P and Butch N P 2019 Science 365 684 [67] Sugawara H, Kobayashi M, Osaki S, Saha S R, Namiki T, Aoki Y and Sato H 2005 Phys. Rev. B 72 014519 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|