|
|
|
Multiple anomalous Hall effect in kagome metal TbV5MnSn6 |
| Zi-Cheng Tao(陶咨成)1,†, Yi-Xuan Luo(罗伊轩)1,†, Shi-Hao Zhang(张世豪)2,‡, and Yan-Feng Guo(郭艳峰)1,3,§ |
1 State Key Laboratory of Quantum Functional Materials, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 2 School of Physics and Electronics, Hunan University, Changsha 410082, China; 3 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China |
|
|
|
|
Abstract The kagome lattice hosts unique electronic structure with Dirac fermions, van Hove singularities, and flat bands, which has been subjected to intensive study in recent years. We report herein the observation of significantly enhanced magnetism including a very large coercive magnetic field up to 4.7 T, optimized magnetic energy product with the maximum value of 45 kJ/m$^{3}$, and an increased magnetic ordering temperature reaching 113 K in Mn-substituted kagome metal TbV$_{6}$Sn$_{6}$, namely, TbV$_{5}$MnSn$_{6}$. Besides, both topological Hall-like and anomalous Hall effects are detected, with the latter being primarily dominated by intrinsic Berry curvature as indicated by our data analysis and theoretical calculations. Our work establishes an effective route for engineering the physical properties of kagome magnets. The results also provide valuable insights into the interplay between magnetism and topological states of the kagome lattice.
|
Received: 24 March 2025
Revised: 26 April 2025
Accepted manuscript online: 08 May 2025
|
|
PACS:
|
71.20.Be
|
(Transition metals and alloys)
|
| |
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
| |
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2024YFA1400066, 2023YFA1406100, and 2024YFA1410300), the open research fund of Beijing National Laboratory for Condensed Matter Physics (Grant No. 2023BNLCMPKF002), the National Natural Science Foundation of China (Grant No. 12304217), Analytical Instrumentation Center (Grant No. SPST-AIC10112914), and the Double First-Class Initiative Fund of ShanghaiTech University. |
Corresponding Authors:
Shi-Hao Zhang, Yan-Feng Guo
E-mail: zhangshh@hnu.edu.cn;guoyf@shanghaitech.edu.cn
|
Cite this article:
Zi-Cheng Tao(陶咨成), Yi-Xuan Luo(罗伊轩), Shi-Hao Zhang(张世豪), and Yan-Feng Guo(郭艳峰) Multiple anomalous Hall effect in kagome metal TbV5MnSn6 2025 Chin. Phys. B 34 087103
|
[1] Yin J X, Pan S H H and Hasan M Z 2021 Nat. Rev. Phys. 3 249 [2] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137 [3] Jiang K,Wu T, Yin J X,Wang Z Y, Hasan M Z,Wilson S D, Chen X H and Hu J P 2023 Natl. Sci. Rev. 10 nwac199 [4] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [5] Xu X T, Yin J X, Qu Z and Jia S 2023 Rep. Prog. Phys. 86 114502 [6] Li M, Ma H, Lou R and Wang S C 2025 Chin. Phys. B 34 017101 [7] Mielke A 1991 J. Phys. A 24 L73 [8] Syôzi I 1951 Prog. Theor. Phys. 6 306 [9] Wang Y B, Wiards D, Ryan D H and Cadogan J M 1994 IEEE Trans. Magn. 30 4951 [10] Venturini G, Welter R and Malaman B 1992 J. Alloys Compd. 185 99 [11] Brabers J H V J, Duijn V H M, Deboer F R and Buschow K H J 1993 J. Alloys Compd. 198 127 [12] Rosenfeld E V and Mushnikov N V 2008 Physica B 403 1898 [13] Cadogan J M and Ryan D H 2001 J. Alloys Compd. 326 166 [14] Brabers J H V J, Buschow K H J and Deboer F R 1994 J. Alloys Compd. 205 77 [15] SchobingerPapamantellos P, RodriguezCarvajal J and Buschow K H J 1997 J. Alloys Compd. 256 92 [16] Yang X Y, Zeng Q Q, He M, Xu X T, Du H F and Qu Z 2024 Chin. Phys. B 33 077501 [17] Fedyna M F, Skolozdra R V and Gorelenko Y K 1999 Inorg. Mater. 35 373 [18] Li L F, Chi S W, Ma W L, Guo K Z, Xu G and Jia S 2024 Chin. Phys. B 33 057501 [19] Lyu M, Liu Y, Zhang S, Liu J Y, Yang J Y, Wang Y B, Feng Y T, Dong X B, Wang B B, Wei H X and Liu E K 2024 Chin. Phys. B 33 107507 [20] Yin J X, Ma W L, Cochran T A, et al. 2020 Nature 583 533 [21] Ma W L, Xu X T, Yin J X, Yang H, Zhou H B, Cheng Z J, Huang Y Q, Qu Z, Wang F, Hasan M Z and Jia S 2021 Phys. Rev. Lett. 126 246602 [22] Li M, Wang Q, Wang G W, Yuan Z H, Song W H, Lou R, Liu Z T, Huang Y B, Liu Z H, Lei H C, Yin Z P and Wang S C 2021 Nat. Commun. 12 3129 [23] Yang T Y, Wan Q, Song J P, Du Z, Tang J, Wang Z W, Plumb N C, Radovic M, Wang G W, Wang G Y, Sun Z, Yin J X, Chen Z H, Huang Y B, Yu R, Shi M, Xiong Y M and Xu N 2022 Quantum Front. 1 14 [24] Zhang H D, Koo J, Xu C Q, Sretenovic M, Yan B H and Ke X L 2022 Nat. Commun. 13 1091 [25] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [26] Ortiz B R, Gomes L C, Morey J R, et al. 2019 Phys. Rev. Mater. 3 094407 [27] Xu H S, Yan Y J, Yin R T, Xia W, Fang S J, Chen Z Y, Li Y J, Yang W Q, Guo Y F and Feng D L 2021 Phys. Rev. Lett. 127 187004 [28] Liu Z H, Zhao N N, Yin Q W, Gong C S, Tu Z J, Li M, Song W H, Liu Z T, Shen D W, Huang Y B, Liu K, Lei H C and Wang S C 2021 Phys. Rev. X 11 041010 [29] Cho S, Ma H Y, Xia W, Yang Y C, Liu Z T, Huang Z, Jiang Z C, Lu X L, Liu J S, Liu Z H, Li J, Wang J H, Liu Y, Jia J F, Guo Y F, Liu J P and Shen D W 2021 Phys. Rev. Lett. 127 236401 [30] Li H X, Zhang T T, Yilmaz T, et al. 2021 Phys. Rev. X 11 031050 [31] Tan H X, Liu Y Z, Wang Z Q and Yan B H 2021 Phys. Rev. Lett. 127 046401 [32] Xiao Q, Lin Y, Li Q, Zheng X, Francoual S, Plueckthun C, Xia W, Qiu Q, Zhang S, Guo Y, Feng J and Peng Y 2023 Phys. Rev. Research 5 L012032 [33] Xiao Q, Li Q Z, Liu J J, Li Y K, Xia W, Zheng X Q, Guo Y F, Wang Z W and Peng Y Y 2023 Phys. Rev. Mater. 7 074801 [34] Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater. 20 1353 [35] Wu Q, Wang Z X, Liu Q M, Li R S, Xu S X, Yin Q W, Gong C S, Tu Z J, Lei H C, Dong T and Wang N L 2022 Phys. Rev. B 106 205109 [36] Xu Y S, Ni Z L, Liu Y Z, Ortiz B R, Deng Q W, Wilson S D, Yan B H, Balents L and Wu L 2022 Nat. Phys. 18 1470 [37] Li H, Zhao H, Ortiz B R, Park T, YeMX, Balents L,Wang Z Q,Wilson S D and Zeljkovic I 2022 Nat. Phys. 18 265 [38] Lee J and Mun E 2022 Phys. Rev. Mater. 6 083401 [39] Zhang X X, Liu Z Y, Cui Q, Guo Q, Wang N N, Shi L F, Zhang H, Wang W H, Dong X L, Sun J P, Dun Z and Cheng J G 2022 Phys. Rev. Mater. 6 105001 [40] Zeng X Y, Wang H, Wang X Y, Lin J F, Gong J, Ma X P, Han K, Wang Y T, Dai Z Y and Xia T L 2024 Phys. Rev. B 109 104412 [41] Peng S T, Han Y L, Pokharel G, Shen J C, Li Z Y, Hashimoto M, Lu D H, Ortiz B R, Luo Y, Li H C, Guo M Y, Wang B Q, Cui S T, Sun Z, Qiao Z H, Wilson S D and He J F 2021 Phys. Rev. Lett. 127 266401 [42] Huang X, Cui Z Q, Huang C X, Huo M W, Liu H, Li J Y, Liang F X, Chen L, Sun H L, Shen B, Zhang Y W and Wang M 2023 Phys. Rev. Mater. 7 054403 [43] Ding J Y, Zhao N N, Tao Z C, Huang Z, Jiang Z C, Yang Y C, Cho S H Y, Liu Z T, Liu J S, Guo Y F, Liu K, Liu Z H and Shen D W 2023 J. Phys.:Condens. Mat. 35 405502 [44] Kong X M, Tao Z C, Zhang R, Xia W, Chen X, Pei C Y, Ying T P, Qi Y P, Guo Y F, Yang X F and Li S Y 2024 Chin. Phys. Lett. 41 047503 [45] Pokharel G, Ortiz B, Chamorro J, Sarte P, Kautzsch L, Wu G, Ruff J and Wilson S D 2022 Phys. Rev. Mater. 6 104202 [46] Rosenberg E, DeStefano J M, Guo Y C, Oh J S, Hashimoto M, Lu D H, Birgeneau R J, Lee Y B, Ke L Q, Yi M and Chu J H 2022 Phys. Rev. B 106 115139 [47] Li H, Cheng S Y, Pokharel G, Eck P, Bigi C, Mazzola F, Sangiovanni G, Wilson S D, Di Sante D, Wang Z Q and Zeljkovic I 2024 Nat. Phys. 20 1103 [48] Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 J. Appl. Crystallogr. 42 339 [49] Toby B H and Von Dreele R B 2013 J. Appl. Crystallogr. 46 544 [50] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [51] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [52] Blochl P E 1994 Phys. Rev. B 50 17953 [53] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [54] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [55] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [56] Huang Y Q, Zheng P Y, Liu R, Xu X T, Wu Z Y, Dong C, Wang J F, Yin Z P and Jia S 2023 Chin. Phys. B 32 107502 [57] Becker J, Tsukamoto A, Kirilyuk A, Maan J C, Rasing T, Christianen P C M and Kimel A V 2017 Phys. Rev. Lett. 118 117203 [58] Bhatt R C, Ye L X, Hai N T,Wu J C andWu T H 2021 J. Magn. Magn. Mater. 537 168196 [59] Mielke C, Ma W L, Pomjakushin V, et al. 2022 Commun. Phys. 5 107 [60] Coey J M D 2002 J. Magn. Magn. Mater. 248 441 [61] Riberolles S X M, Slade T J, Abernathy D L, Granroth G E, Li B, Lee Y, Canfield P C, Ueland B G, Ke L Q and McQueeney R J 2022 Phys. Rev. X 12 021043 [62] Nil L, Trevisan T V and Mcqueeney R J 2025 Phys. Rev. B 111 054410 [63] Xu X T, Yin J X, Ma W L, Tien H J, Qiang X B, Reddy P V S, Zhou H B, Shen J, Lu H Z, Chang T R, Qu Z and Jia S 2022 Nat. Commun. 13 1197 [64] Pugh E M and Lippert T W 1932 Phys. Rev. 42 709 [65] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [66] Wang H, Dai Y Y, Chow G M and Chen J S 2022 Prog. Mater. Sci. 130 100971 [67] Smit J 1958 Physica 24 39 [68] Karplus R and Luttinger J M 1954 Phys. Rev. B 95 1154 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|