|
|
|
Magnetotransport properties of large-scale PtTe2 Dirac semimetal films grown by pulsed laser deposition |
| Zhongqiang Chen(陈中强), Zhe Wang(王喆), Kankan Xu(徐侃侃), Xu Zhang(张旭), Ruijie Xu(徐睿劼), and Xuefeng Wang(王学锋)† |
| National Key Laboratory of Spintronics, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
|
|
Abstract Type-II Dirac semimetal PtTe$_{2}$ is a promising candidate for various electronic device applications due to its high carrier mobility, high conductivity, and air stability. In this work, we report on the growth of large-scale PtTe$_{2}$ films by the pulsed laser deposition (PLD) and the comparison of the magnetotransport properties with the PtTe$_{2}$ films grown by the chemical vapor deposition (CVD). The low-temperature Hall curves of the PLD-grown films exhibit a linear behavior, in contrast with the nonlinear characteristic of the Hall behavior observed in CVD-grown films, in which a defect gradient is introduced. Meanwhile, both PtTe$_{2}$ films show weak antilocalization at low temperatures, which is attributed to the strong spin-orbit coupling.
|
Received: 11 April 2025
Revised: 17 April 2025
Accepted manuscript online: 23 April 2025
|
|
PACS:
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
| |
75.30.Gw
|
(Magnetic anisotropy)
|
| |
75.47.Lx
|
(Magnetic oxides)
|
| |
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1402404) and the National Natural Science Foundation of China (Grant Nos. T2394473, 624B2070, and 62274085). |
Corresponding Authors:
Xuefeng Wang
E-mail: xfwang@nju.edu.cn
|
Cite this article:
Zhongqiang Chen(陈中强), Zhe Wang(王喆), Kankan Xu(徐侃侃), Xu Zhang(张旭), Ruijie Xu(徐睿劼), and Xuefeng Wang(王学锋) Magnetotransport properties of large-scale PtTe2 Dirac semimetal films grown by pulsed laser deposition 2025 Chin. Phys. B 34 077401
|
[1] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H and Yang H 2015 Science 349 625 [2] Sung J H, Heo H, Si S, Kim Y H, Noh H R, Song K, Kim J, Lee C S, Seo S Y, Kim D H, Kim H K, Yeom H W, Kim T H, Choi S Y, Kim J S and Jo M H 2017 Nat. Nanotechnol. 12 1064 [3] Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X and Wang K Y 2022 Chin. Phys. Lett. 39 128501 [4] Chowdhury T, Sadler E C and Kempa T J 2020 Chem. Rev. 120 12563 [5] Ma Q, Krishna Kumar R, Xu S Y, Koppens F H L and Song J C W 2023 Nat. Rev. Phys. 5 170 [6] Ma Q, Grushin A G and Burch K S 2021 Nat. Mater. 20 1601 [7] Sierra J F, Fabian J, Kawakami R K, Roche S and Valenzuela S O 2021 Nat. Nanotechnol. 16 856 [8] Pi L J, Li L, Liu K L, Zhang Q F, Li H Q and Zhai T Y 2019 Adv. Funct. Mater. 29 1904932 [9] Mak K F, Shan J and Ralph D C 2019 Nat. Rev. Phys. 1 646 [10] Jin W, Zhang G J, Wu H, Yang L, Zhang W F and Chang H X 2023 Chin. Phys. Lett. 40 057301 [11] Li H, Ruan S C and Zeng Y J 2019 Adv. Mater. 31 e1900065 [12] Duong D L, Yun S J and Lee Y H 2017 ACS Nano 11 11803 [13] Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C,Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T and Liu Z 2018 Nature 556 355 [14] Fu L, Hu D B, Mendes R G, Rummeli M H, Dai Q, Wu B, Fu L and Liu Y Q 2018 ACS Nano 12 9405 [15] Ma H F, Chen P, Li B, Li J, Ai R Q, Zhang Z W, Sun G Z, Yao K K, Lin Z Y, Zhao B, Wu R X, Tang X W, Duan X D and Duan X F 2018 Nano Lett. 18 3523 [16] Xu H, Guo C, Zhang J Z, GuoWL, Kuo C N, Lue C S, HuWD,Wang L, Chen G, Politano A, Chen X S and Lu W 2019 Small 15 e1903362 [17] Yadav P, Chen X H, Bhatt S, Das S, Yang H and Mishra R 2024 Nano Lett. 24 2376 [18] Lee W Y, Kang M S, Kim G S, Choi J W, Park N W, Sim Y, Kim Y H, Seong M J, Yoon Y G, Saitoh E and Lee S K 2022 ACS Nano 16 3404 [19] Falson J 2024 Nat. Mater. 24 158 [20] Xue G D, Qin B, Ma C J, Yin P, Liu C and Liu K H 2024 Chem. Rev. 124 9785 [21] Choudhury T H, Zhang X T, Al Balushi Z Y, ChubarovMand Redwing J M 2020 Annu. Rev. Mater. Res. 50 155 [22] Zhuang W Z, Chen Z Q and Wang X F 2022 Advances in Physics: X 7 2034529 [23] Shepelin N A, Tehrani Z P, Ohannessian N, Schneider C W, Pergolesi D and Lippert T 2023 Chem. Soc. Rev. 52 2294 [24] Li X, Liu K X, Wu D, Lin P, Shi Z F, Li X J, Zeng L H, Chai Y, Lau S P and Tsang Y H 2025 Adv. Mater. 37 2415717 [25] Yao J D, Zheng Z Q and Yang G W 2019 Prog. Mater. Sci. 106 100573 [26] Gao M, Zhang M H, Niu W, Chen Y Q, Gu M, Wang H Y, Song F Q, Wang P, Yan S C,Wang F Q,Wang X R,Wang X F, Xu Y B and Zhang R 2017 Appl. Phys. Lett. 111 031906 [27] Chen Y Q, Chen Y D, Ning J A, Chen L M, ZhuangWZ, He L, Zhang R, Xu Y B and Wang X F 2020 Chin. Phys. Lett. 37 017104 [28] Chen Y Q, Liu R X, Chen Y D, Yuan X, Ning J A, Zhang C C, Chen L M, Wang P, He L, Zhang R, Xu Y B and Wang X F 2021 Chin. Phys. Lett. 38 017101 [29] Yang J F, Zhu C, Deng Y, Tang B J and Liu Z 2023 iScience 26 106567 [30] Chen Y Q, Zhu Y M, Lin R J, Niu W, Liu R X, Zhuang W Z, Zhang X, Liang J H, Sun W X, Chen Z Q, Hu Y S, Song F Q, Zhou J, Wu D, Ge B H, Yang H X, Zhang R and Wang X F 2023 Adv. Funct. Mater. 33 2302984 [31] Song A K, Zhang J A, Chen Y Q, Zhang Z Z, Cheng X J, Xu R J, Zhuang W Z, Sun W X, Zhang Y, Zhang X, Chen Z Q, Song F Q, Zhang Y, Zhai X C, Xu Y B, Zhao W S, Zhang R and Wang X F 2025 Adv. Funct. Mater. 35 2422040 [32] Sun W X, Chen Y Q, Zhuang W Z, Chen Z Q, Song A K, Liu R X and Wang X F 2023 Nanotechnology 34 135001 [33] Sun W X, Chen Y Q, Xu R J, Zhuang W Z, Wang D, Liu L, Song A K, Xing G Z, Xu Y B, Zhang R, Chang C Z and Wang X F 2025 Adv. Funct. Mater. 35 2501880 [34] Yan M Z, Huang H Q, Zhang K N, Wang E Y, Yao W, Deng K, Wan G L, Zhang H Y, Arita M, Yang H T, Sun Z, Yao H, Wu Y, Fan S S, Duan W H and Zhou S Y 2017 Nat. Commun. 8 257 [35] Lin M K, Villaos R A B, Hlevyack J A, Chen P, Liu R Y, Hsu C H, Avila J, Mo S K, Chuang F C and Chiang T C 2020 Phys. Rev. Lett. 124 036402 [36] Fu D Z, Bo X Y, Fei F C, Wu B, Gao M, Wang X F, Naveed M, Shah S A, Bu H J, Wang B G, Cao L, Zou W, Wan X G and Song F Q 2018 Phys. Rev. B 97 245109 [37] Xu H J,Wei JW, Zhou H G, Feng J F, Xu T, Du H F, He C L, Huang Y, Zhang J W, Liu Y Z, Wu H C, Guo C Y, Wang X, Guang Y, Wei H X, Peng Y, JiangWJ, Yu G Q and Han X F 2020 Adv. Mater. 32 e2000513 [38] Wang M J, Ko T J, Shawkat M S, Han S S, Okogbue E, Chung H S, Bae T S, Sattar S, Gil J, Noh C, Oh K H, Jung Y, Larsson J A and Jung Y 2020 ACS Appl. Mater. Interfaces 12 10839 [39] Chen Z Q, Qiu H S, Cheng X J, Cui J Z, Jin Z M, Tian D, Zhang X, Xu K K, Liu R X, Niu W, Zhou L Q, Qiu T Y, Chen Y Q, Zhang C H, Xi X X, Song F Q, Yu R, Zhai X C, Jin B B, Zhang R andWang X F 2024 Nat. Commun. 15 2605 [40] Hao S, Zeng J W, Xu T, Cong X, Wang C Y, Wu C C, Wang Y J, Liu X W, Cao T J, Su G X, Jia L X, Wu Z T, Lin Q, Zhang L L, Yan S N, Guo M F, Wang Z L, Tan P H, Sun L T, Ni Z H, Liang S J, Cui X Y and Miao F 2018 Adv. Funct. Mater. 28 1803746 [41] Zhang K N, Wang M, Zhou X, Wang Y, Shen S C, Deng K, Peng H N, Li J H, Lai X B, Zhang L W, Wu Y, Duan W H, Yu P and Zhou S Y 2020 Nano Res. 14 1663 [42] Deng K, Yan M Z, Yu C P, Li J H, Zhou X, Zhang K N, Zhao Y X, Miyamoto K, Okuda T, Duan W H, Wu Y, Zhong X Y and Zhou S Y 2019 Sci. Bull. 64 1044 [43] Wang F, Shi G Y, Kim K W, Park H J, Jang J G, Tan H R, Lin M, Liu Y K, Kim T, Yang D S, Zhao S S, Lee K, Yang S H, Soumyanarayanan A, Lee K J and Yang H 2024 Nat. Mater. 23 768 [44] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702 [45] Li Z Y, Chen Y Q, Song A K, Zhang J Z, Zhang R, Zhang Z Z and Wang X F 2024 Light Sci. Appl. 13 181 [46] Choo S, Varshney S, Liu H, Sharma S, James R D and Jalan B 2024 Sci. Adv. 10 eadq8561 [47] Wieting T J and Verble J L 1972 Phys. Rev. B 5 1473 [48] Yuan H T, Bahramy M S, Morimoto K, Wu S F, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X D, Arita R, Nagaosa N and Iwasa Y 2013 Nat. Phys. 9 563 [49] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707 [50] Feng R F, Zhang Y, Li J H, Li Q, Bao C H, Zhang H Y, Chen W Y, Tang X, Yaegashi K, Sugawara K, Sato T, Duan W H, Yu P and Zhou S Y 2025 Nat. Commun. 16 2667 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|