Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077401    DOI: 10.1088/1674-1056/adcf8c
RAPID COMMUNICATION Prev   Next  

Magnetotransport properties of large-scale PtTe2 Dirac semimetal films grown by pulsed laser deposition

Zhongqiang Chen(陈中强), Zhe Wang(王喆), Kankan Xu(徐侃侃), Xu Zhang(张旭), Ruijie Xu(徐睿劼), and Xuefeng Wang(王学锋)†
National Key Laboratory of Spintronics, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Type-II Dirac semimetal PtTe$_{2}$ is a promising candidate for various electronic device applications due to its high carrier mobility, high conductivity, and air stability. In this work, we report on the growth of large-scale PtTe$_{2}$ films by the pulsed laser deposition (PLD) and the comparison of the magnetotransport properties with the PtTe$_{2}$ films grown by the chemical vapor deposition (CVD). The low-temperature Hall curves of the PLD-grown films exhibit a linear behavior, in contrast with the nonlinear characteristic of the Hall behavior observed in CVD-grown films, in which a defect gradient is introduced. Meanwhile, both PtTe$_{2}$ films show weak antilocalization at low temperatures, which is attributed to the strong spin-orbit coupling.
Keywords:  PtTe$_{2}$      pulsed laser deposition      magnetotransport properties      thin films  
Received:  11 April 2025      Revised:  17 April 2025      Accepted manuscript online:  23 April 2025
PACS:  74.78.Fk (Multilayers, superlattices, heterostructures)  
  75.30.Gw (Magnetic anisotropy)  
  75.47.Lx (Magnetic oxides)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1402404) and the National Natural Science Foundation of China (Grant Nos. T2394473, 624B2070, and 62274085).
Corresponding Authors:  Xuefeng Wang     E-mail:  xfwang@nju.edu.cn

Cite this article: 

Zhongqiang Chen(陈中强), Zhe Wang(王喆), Kankan Xu(徐侃侃), Xu Zhang(张旭), Ruijie Xu(徐睿劼), and Xuefeng Wang(王学锋) Magnetotransport properties of large-scale PtTe2 Dirac semimetal films grown by pulsed laser deposition 2025 Chin. Phys. B 34 077401

[1] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H and Yang H 2015 Science 349 625
[2] Sung J H, Heo H, Si S, Kim Y H, Noh H R, Song K, Kim J, Lee C S, Seo S Y, Kim D H, Kim H K, Yeom H W, Kim T H, Choi S Y, Kim J S and Jo M H 2017 Nat. Nanotechnol. 12 1064
[3] Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X and Wang K Y 2022 Chin. Phys. Lett. 39 128501
[4] Chowdhury T, Sadler E C and Kempa T J 2020 Chem. Rev. 120 12563
[5] Ma Q, Krishna Kumar R, Xu S Y, Koppens F H L and Song J C W 2023 Nat. Rev. Phys. 5 170
[6] Ma Q, Grushin A G and Burch K S 2021 Nat. Mater. 20 1601
[7] Sierra J F, Fabian J, Kawakami R K, Roche S and Valenzuela S O 2021 Nat. Nanotechnol. 16 856
[8] Pi L J, Li L, Liu K L, Zhang Q F, Li H Q and Zhai T Y 2019 Adv. Funct. Mater. 29 1904932
[9] Mak K F, Shan J and Ralph D C 2019 Nat. Rev. Phys. 1 646
[10] Jin W, Zhang G J, Wu H, Yang L, Zhang W F and Chang H X 2023 Chin. Phys. Lett. 40 057301
[11] Li H, Ruan S C and Zeng Y J 2019 Adv. Mater. 31 e1900065
[12] Duong D L, Yun S J and Lee Y H 2017 ACS Nano 11 11803
[13] Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C,Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T and Liu Z 2018 Nature 556 355
[14] Fu L, Hu D B, Mendes R G, Rummeli M H, Dai Q, Wu B, Fu L and Liu Y Q 2018 ACS Nano 12 9405
[15] Ma H F, Chen P, Li B, Li J, Ai R Q, Zhang Z W, Sun G Z, Yao K K, Lin Z Y, Zhao B, Wu R X, Tang X W, Duan X D and Duan X F 2018 Nano Lett. 18 3523
[16] Xu H, Guo C, Zhang J Z, GuoWL, Kuo C N, Lue C S, HuWD,Wang L, Chen G, Politano A, Chen X S and Lu W 2019 Small 15 e1903362
[17] Yadav P, Chen X H, Bhatt S, Das S, Yang H and Mishra R 2024 Nano Lett. 24 2376
[18] Lee W Y, Kang M S, Kim G S, Choi J W, Park N W, Sim Y, Kim Y H, Seong M J, Yoon Y G, Saitoh E and Lee S K 2022 ACS Nano 16 3404
[19] Falson J 2024 Nat. Mater. 24 158
[20] Xue G D, Qin B, Ma C J, Yin P, Liu C and Liu K H 2024 Chem. Rev. 124 9785
[21] Choudhury T H, Zhang X T, Al Balushi Z Y, ChubarovMand Redwing J M 2020 Annu. Rev. Mater. Res. 50 155
[22] Zhuang W Z, Chen Z Q and Wang X F 2022 Advances in Physics: X 7 2034529
[23] Shepelin N A, Tehrani Z P, Ohannessian N, Schneider C W, Pergolesi D and Lippert T 2023 Chem. Soc. Rev. 52 2294
[24] Li X, Liu K X, Wu D, Lin P, Shi Z F, Li X J, Zeng L H, Chai Y, Lau S P and Tsang Y H 2025 Adv. Mater. 37 2415717
[25] Yao J D, Zheng Z Q and Yang G W 2019 Prog. Mater. Sci. 106 100573
[26] Gao M, Zhang M H, Niu W, Chen Y Q, Gu M, Wang H Y, Song F Q, Wang P, Yan S C,Wang F Q,Wang X R,Wang X F, Xu Y B and Zhang R 2017 Appl. Phys. Lett. 111 031906
[27] Chen Y Q, Chen Y D, Ning J A, Chen L M, ZhuangWZ, He L, Zhang R, Xu Y B and Wang X F 2020 Chin. Phys. Lett. 37 017104
[28] Chen Y Q, Liu R X, Chen Y D, Yuan X, Ning J A, Zhang C C, Chen L M, Wang P, He L, Zhang R, Xu Y B and Wang X F 2021 Chin. Phys. Lett. 38 017101
[29] Yang J F, Zhu C, Deng Y, Tang B J and Liu Z 2023 iScience 26 106567
[30] Chen Y Q, Zhu Y M, Lin R J, Niu W, Liu R X, Zhuang W Z, Zhang X, Liang J H, Sun W X, Chen Z Q, Hu Y S, Song F Q, Zhou J, Wu D, Ge B H, Yang H X, Zhang R and Wang X F 2023 Adv. Funct. Mater. 33 2302984
[31] Song A K, Zhang J A, Chen Y Q, Zhang Z Z, Cheng X J, Xu R J, Zhuang W Z, Sun W X, Zhang Y, Zhang X, Chen Z Q, Song F Q, Zhang Y, Zhai X C, Xu Y B, Zhao W S, Zhang R and Wang X F 2025 Adv. Funct. Mater. 35 2422040
[32] Sun W X, Chen Y Q, Zhuang W Z, Chen Z Q, Song A K, Liu R X and Wang X F 2023 Nanotechnology 34 135001
[33] Sun W X, Chen Y Q, Xu R J, Zhuang W Z, Wang D, Liu L, Song A K, Xing G Z, Xu Y B, Zhang R, Chang C Z and Wang X F 2025 Adv. Funct. Mater. 35 2501880
[34] Yan M Z, Huang H Q, Zhang K N, Wang E Y, Yao W, Deng K, Wan G L, Zhang H Y, Arita M, Yang H T, Sun Z, Yao H, Wu Y, Fan S S, Duan W H and Zhou S Y 2017 Nat. Commun. 8 257
[35] Lin M K, Villaos R A B, Hlevyack J A, Chen P, Liu R Y, Hsu C H, Avila J, Mo S K, Chuang F C and Chiang T C 2020 Phys. Rev. Lett. 124 036402
[36] Fu D Z, Bo X Y, Fei F C, Wu B, Gao M, Wang X F, Naveed M, Shah S A, Bu H J, Wang B G, Cao L, Zou W, Wan X G and Song F Q 2018 Phys. Rev. B 97 245109
[37] Xu H J,Wei JW, Zhou H G, Feng J F, Xu T, Du H F, He C L, Huang Y, Zhang J W, Liu Y Z, Wu H C, Guo C Y, Wang X, Guang Y, Wei H X, Peng Y, JiangWJ, Yu G Q and Han X F 2020 Adv. Mater. 32 e2000513
[38] Wang M J, Ko T J, Shawkat M S, Han S S, Okogbue E, Chung H S, Bae T S, Sattar S, Gil J, Noh C, Oh K H, Jung Y, Larsson J A and Jung Y 2020 ACS Appl. Mater. Interfaces 12 10839
[39] Chen Z Q, Qiu H S, Cheng X J, Cui J Z, Jin Z M, Tian D, Zhang X, Xu K K, Liu R X, Niu W, Zhou L Q, Qiu T Y, Chen Y Q, Zhang C H, Xi X X, Song F Q, Yu R, Zhai X C, Jin B B, Zhang R andWang X F 2024 Nat. Commun. 15 2605
[40] Hao S, Zeng J W, Xu T, Cong X, Wang C Y, Wu C C, Wang Y J, Liu X W, Cao T J, Su G X, Jia L X, Wu Z T, Lin Q, Zhang L L, Yan S N, Guo M F, Wang Z L, Tan P H, Sun L T, Ni Z H, Liang S J, Cui X Y and Miao F 2018 Adv. Funct. Mater. 28 1803746
[41] Zhang K N, Wang M, Zhou X, Wang Y, Shen S C, Deng K, Peng H N, Li J H, Lai X B, Zhang L W, Wu Y, Duan W H, Yu P and Zhou S Y 2020 Nano Res. 14 1663
[42] Deng K, Yan M Z, Yu C P, Li J H, Zhou X, Zhang K N, Zhao Y X, Miyamoto K, Okuda T, Duan W H, Wu Y, Zhong X Y and Zhou S Y 2019 Sci. Bull. 64 1044
[43] Wang F, Shi G Y, Kim K W, Park H J, Jang J G, Tan H R, Lin M, Liu Y K, Kim T, Yang D S, Zhao S S, Lee K, Yang S H, Soumyanarayanan A, Lee K J and Yang H 2024 Nat. Mater. 23 768
[44] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702
[45] Li Z Y, Chen Y Q, Song A K, Zhang J Z, Zhang R, Zhang Z Z and Wang X F 2024 Light Sci. Appl. 13 181
[46] Choo S, Varshney S, Liu H, Sharma S, James R D and Jalan B 2024 Sci. Adv. 10 eadq8561
[47] Wieting T J and Verble J L 1972 Phys. Rev. B 5 1473
[48] Yuan H T, Bahramy M S, Morimoto K, Wu S F, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X D, Arita R, Nagaosa N and Iwasa Y 2013 Nat. Phys. 9 563
[49] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[50] Feng R F, Zhang Y, Li J H, Li Q, Bao C H, Zhang H Y, Chen W Y, Tang X, Yaegashi K, Sugawara K, Sato T, Duan W H, Yu P and Zhou S Y 2025 Nat. Commun. 16 2667
[1] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[2] Magnetic and electrical transport properties in GdAlSi and SmAlGe
Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙). Chin. Phys. B, 2024, 33(7): 077302.
[3] Structure, ferroelectric, and enhanced fatigue properties of sol-gel-processed new Bi-based perovskite thin films of Bi(Cu1/2Ti1/2)O3-PbTiO3
Wei-Bin Song(宋伟宾), Guo-Qiang Xi(席国强), Zhao Pan(潘昭), Jin Liu(刘锦), Xu-Bin Ye(叶旭斌), Zhe-Hong Liu(刘哲宏), Xiao Wang(王潇), Peng-Fei Shan(单鹏飞), Lin-Xing Zhang(张林兴), Nian-Peng Lu(鲁年鹏), Long-Long Fan(樊龙龙), Xiao-Mei Qin(秦晓梅), and You-Wen Long(龙有文). Chin. Phys. B, 2024, 33(5): 057701.
[4] Optimization of large-area YBa2Cu3O7-δ thin films by pulsed laser deposition for planar microwave devices
Pei-Yu Xiong(熊沛雨), Fu-Cong Chen(陈赋聪), Zhong-Pei Feng(冯中沛), Jing-Ting Yang(杨景婷), Yu-Dong Xia(夏钰东), Yue-Feng Yuan(袁跃峰), Xu Wang(王旭), Jie Yuan(袁洁), Yun Wu(吴云), Jing Shi(石兢), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(7): 077402.
[5] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[6] Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition
Shien Li(李世恩), Zefeng Lin(林泽丰), Wei Hu(胡卫), Dayu Yan(闫大禹), Fucong Chen(陈赋聪), Xinbo Bai(柏欣博), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Youguo Shi(石友国), Kui Jin(金魁), Hongming Weng(翁红明), and Haizhong Guo(郭海中). Chin. Phys. B, 2023, 32(4): 047103.
[7] Effect of seed layers on the static and dynamic magnetic properties of CoIr films with negative effective magnetocrystalline anisotropy
Tianyong Ma(马天勇), Sha Zhang(张莎), Chenhu Zhang(张晨虎), Zhiwei Li(李志伟), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2023, 32(12): 127503.
[8] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[9] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[10] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[11] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[12] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[13] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[14] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[15] Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications
Bin Liu(刘斌) and Hong Zhou(周洪). Chin. Phys. B, 2021, 30(10): 106803.
No Suggested Reading articles found!