Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 084201    DOI: 10.1088/1674-1056/ad4a3c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Surface phonon resonance: A new mechanism for enhancing photonic spin Hall effect and refractive index sensor

Jie Cheng(程杰)1,†, Chenglong Wang(汪承龙)2, Yiming Li(李一铭)1, Yalin Zhang(张亚林)1, Shengli Liu(刘胜利)1, and Peng Dong(董鹏)3,‡
1 School of Science, Jiangsu Province Engineering Research Center of Low Dimensional Physics and New Energy, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 School of Electrical Engineering, Research Center of Intelligent Sensor and Network Engineering Technology of Jiangsu Province, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
Abstract  Metal-based surface plasmon resonance (SPR) plays an important role in enhancing the photonic spin Hall effect (SHE) and developing sensitive optical sensors. However, the very large negative permittivities of metals limit their applications beyond the near-infrared regime. In this work, we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance (SPhR) in the mid-infrared regime. The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer. Under the optimal parameter setup, the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 μm, which is much larger than the condition of SPR. Moreover, an NO$_{2}$ gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance. Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC. The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.
Keywords:  photonic spin Hall effect      refractive index sensor      surface phonon resonance      SiC  
Received:  03 April 2024      Revised:  09 May 2024      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.79.-e (Optical elements, devices, and systems)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175107), the Natural Science Foundation of Nanjing Vocational University of Industry Technology (Grant No. YK22-02-08), the Qing Lan Project of Jiangsu Province, the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20230347), and the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province, China (Grant No. ZK21-05-09).
Corresponding Authors:  Jie Cheng, Peng Dong     E-mail:  chengj@njupt.edu.cn;2021101298@niit.edu.cn

Cite this article: 

Jie Cheng(程杰), Chenglong Wang(汪承龙), Yiming Li(李一铭), Yalin Zhang(张亚林), Shengli Liu(刘胜利), and Peng Dong(董鹏) Surface phonon resonance: A new mechanism for enhancing photonic spin Hall effect and refractive index sensor 2024 Chin. Phys. B 33 084201

[1] Shankaran D R, Gobi K V and Miura N 2007 Sens. Actuators B 121 158
[2] Xu Y, Wu L and Ang L K 2019 Phys. Rev. Appl. 12 024029
[3] Zheng G, Chen Y, Bu L, Xu L and Su W 2016 Opt. Lett. 41 1582
[4] Valsecchi C and Brolo A G 2013 Langmuir 29 5638
[5] Xu Y, Bai P, Zhou X, Akimov Y, Png C E, Ang L K, Knoll W and Wu L 2019 Adv. Opt. Mater. 7 1801433
[6] Zhang J, Zhang L and Xu W 2012 J. Phys. D: Appl. Phys. 45 113001
[7] Boltasseva A and Atwater H A 2011 Science 331 290
[8] Wang T, Li P, Hauer B, Chigrin D N and Taubner T 2013 Nano Lett. 13 5051
[9] Neuner III B, Korobkin D, Fietz C, Carole D, Ferro G and Shvets G 2009 Opt. Lett. 34 2667
[10] Caldwell J D, Lindsay L, Giannini V, Vurgaftman I, Reinecke T L, Maier S A and Glembocki O J 2015 Nanophotonics 4 44
[11] Caldwell J D, Glembocki O J, Francescato Y, Sharac N, Giannini V, Bezares F J, Long J P, Owrutsky J C, Vurgaftman I, Tischler J G, Wheeler V D, Bassim N D, Shirey L M, Kasica R and Maier S A 2013 Nano Lett. 13 3690
[12] Zheng G, Xu L, Zou X and Liu Y 2017 Appl. Surf. Sci. 396 711
[13] Zhang X, Wang Y, Zhao X, Huang T, Zeng S and Ping P S 2019 IEEE Photonics J. 11 4800808
[14] Cao Y, Sheng L J, Cheng J H, Mei W and Ling X H 2024 Opt. Laser Technol. 174 110583
[15] Liu Y, Ke Y, Luo H and Wen S 2017 Nanophotonics 6 51
[16] Dong P, Wang G J and Cheng J 2021 Chin. Phys. B 30 034202
[17] Bliokh K Y, Niv A, Kleiner V and Hasman E 2008 Nat. Photonics 2 748
[18] Hosten O and Kwiat P 2008 Science 319 787
[19] Ling X, Zhou X, Huang K, Liu Y, Qiu C W, Luo H and Wen S 2017 Rep. Prog. Phys. 80 066401
[20] Zhou X, Xiao Z, Luo H and Wen S 2012 Phys. Rev. A 85 043809
[21] Zhou X, Ling X, Luo H and Wen S 2012 Appl. Phys. Lett. 101 251602
[22] Liu J, Zeng K, Xu W, Chen S, Luo H and Wen S 2019 Appl. Phys. Lett. 115 251102
[23] Cheng J, Xiang Y, Xu J, Liu S and Dong P 2022 IEEE Sens. J. 22 12754
[24] Sui J Y, Liao S Y, Li B and Zhang H F 2022 Opt. Lett. 47 6065
[25] Wang R, Zhou J, Zeng K, Chen S, Ling X, Shu W, Luo H and Wen S 2020 APL Photonics 5 016105
[26] Zhou X, Sheng L and Ling X 2018 Sci. Rep. 8 1221
[27] Cheng J, Wang G, Dong P, Liu D, Chi F and Liu S 2022 Chin. Phys. B 31 014205
[28] Li N, Tang T, Li J, Luo L, Li C, Shen J and Yao J 2019 J. Magn. Magn. Mater. 484 445
[29] Zhou X and Ling X 2016 IEEE Photonics J. 8 4801108
[30] Sahu S, Srivastava T and Jha R 2023 Appl. Phys Lett. 123 203302
[31] Dong P, Xiang Y, Li R, Wang C, Cheng C and Cheng J 2023 Ann. Phys. 535 2300309
[32] Yang W, Ang L K, Zhang W, Han J and Xu Y 2023 Opt. Express 31 27041
[33] Barnes N P and Piltch M S 1979 J. Opt. Soc. Am. 69 178
[34] Luo H, Zhou X, Shu W, Wen S and Fan D 2011 Phys. Rev. A 84 043806
[35] Tan X J and Zhu X S 2016 Opt. Lett. 41 2478
[36] Ling X, Xiao W, Chen S, Zhou X, Luo H and Zhou L 2021 Phys. Rev. A 103 033515
[37] Passaro V M, Troia B and De Leonardis F 2012 Sens. Actuators B 168 402
[38] Fulvio D, Sivaraman B, Baratta G A, Palumbo M E and Mason N J 2009 Spectrochim. Acta, Part A 72 1007
[39] Mayorga M A 1994 Toxicology 89 175
[40] Ahlawat L, Kamal K and Sinha R K 2024 Opt. Laser Technol. 170 110183
[1] Strip method to construct a two-dimensional quasilattice with eight-fold symmetry
Weishen Huang(黄伟深) and Xiujun Fu(傅秀军). Chin. Phys. B, 2024, 33(9): 096102.
[2] Single crystal growth and characterization of 166-type magnetic kagome metals
Huangyu Wu(吴黄宇), Jinjin Liu(刘锦锦), Yongkai Li(李永恺), Peng Zhu(朱鹏), Liu Yang(杨柳), Fuhong Chen(陈富红), Deng Hu(胡灯), and Zhiwei Wang(王秩伟). Chin. Phys. B, 2024, 33(9): 098101.
[3] Tunable energy spectrum betatron x-ray sources in a plasma wakefield
Chuan-Yi Xi(奚传易), Yin-Ren Shou(寿寅任), Li-Qi Han(韩立琦), Abdughupur Ablimit(阿卜杜伍普尔·阿布力米提), Xiao-Dan Liu(刘晓丹), Yan-Ying Zhao(赵研英), and Jin-Qing Yu(余金清). Chin. Phys. B, 2024, 33(8): 085202.
[4] Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance
Rui Xin(辛睿), Yaqi Wang(王亚祺), Ze Fang(房泽), Fengji Zheng(郑凤基), Wen Gao(高雯), Dashi Fu(付大石), Guoqing Shi(史国庆), Jian-Yi Liu(刘建一), and Yongcheng Zhang(张永成). Chin. Phys. B, 2024, 33(8): 087701.
[5] Controlled fabrication of freestanding monolayer SiC by electron irradiation
Yunli Da(笪蕴力), Ruichun Luo(罗瑞春), Bao Lei(雷宝), Wei Ji(季威), and Wu Zhou(周武). Chin. Phys. B, 2024, 33(8): 086802.
[6] Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field
Guangqi Fan(樊光琦), Zhijie Yang(杨志杰), Fenghao Sun(孙烽豪), Jinmei Zheng(郑金梅), Yuntian Han(韩云天), Mingqian Huang(黄明谦), and Qingcao Liu(刘情操). Chin. Phys. B, 2024, 33(8): 083102.
[7] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[8] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[9] Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes
Haiyuan Wang(王海源), Shuai Jiang(姜帅), Tong Liu(刘桐), Lai Wei(魏来), Qibin Luan(栾其斌), and Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2024, 33(6): 065202.
[10] Dynamical localization in a non-Hermitian Floquet synthetic system
Han Ke(可汗), Jiaming Zhang(张嘉明), Liang Huo(霍良), and Wen-Lei Zhao(赵文垒). Chin. Phys. B, 2024, 33(5): 050507.
[11] Thermal management by manipulating electromagnetic parameters
Yun Wang(王云), Di-Fei Liang(梁迪飞), Tian-Cheng Han(韩天成), and Long-Jiang Deng(邓龙江). Chin. Phys. B, 2024, 33(5): 058403.
[12] TCAS-PINN: Physics-informed neural networks with a novel temporal causality-based adaptive sampling method
Jia Guo(郭嘉), Haifeng Wang(王海峰), Shilin Gu(古仕林), and Chenping Hou(侯臣平). Chin. Phys. B, 2024, 33(5): 050701.
[13] Effects of counter-current driven by electron cyclotron waves on neoclassical tearing mode suppression
Qin Gao(高钦) and Ping-Wei Zheng(郑平卫). Chin. Phys. B, 2024, 33(5): 055202.
[14] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[15] Non-Gaussian quantum states generated via quantum catalysis and their statistical properties
Xiao-Yan Zhang(张晓燕), Chun-Yan Yang(杨春燕), Ji-Suo Wang(王继锁), and Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2024, 33(4): 040308.
No Suggested Reading articles found!