Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087102    DOI: 10.1088/1674-1056/addeba
RAPID COMMUNICATION Prev   Next  

First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si

Zi-Kai Zhou(周子凯)1 and Jun Kang(康俊)1,2,†
1 Beijing Computational Science Research Center, Beijing 100193, China;
2 Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  Control of hyperfine interaction strength of shallow donors in Si is one of the central issues in realizing Kane quantum computers. First-principles calculations on the hyperfine Stark shift of shallow donors are challenging since large supercells are needed to accommodate the delocalized donor wave functions. In this work, we investigated the hyperfine Stark shift and its strain tunability for shallow donors P and As in Si using the potential patching method based on first-principles density functional theory calculations. The good agreement between our calculations and experimental results confirms that the potential patching method is a feasible and accurate first-principles approach for studying wave-function-related properties of shallow impurities, such as the Stark shift parameter. It is further shown that the application of strain expands the range of hyperfine Stark shift and helps improve the response of shallow donor based qubit gates. The results could be useful for developing quantum computing architectures based on shallow donors in Si.
Keywords:  shallow donors      first-principles calculations      hyperfine interaction  
Received:  21 April 2025      Revised:  20 May 2025      Accepted manuscript online:  30 May 2025
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.55.-i (Impurity and defect levels)  
  31.30.Gs (Hyperfine interactions and isotope effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12393831 and 12088101).
Corresponding Authors:  Jun Kang     E-mail:  jkang@csrc.ac.cn

Cite this article: 

Zi-Kai Zhou(周子凯) and Jun Kang(康俊) First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si 2025 Chin. Phys. B 34 087102

[1] Kane B E 1998 Nature 393 133
[2] McCallum J C, Johnson B C and Botzem T 2021 Appl. Phys. Rev. 8 31314
[3] Saeedi K, Simmons S, Salvail J Z, Dluhy P, Riemann H, Abrosimov N V, Becker P, Pohl H, Morton J J L and Thewalt M L W 2013 Science 342 830
[4] Pla J J, Tan K Y, Dehollain J P, Lim W H, Morton J J L, Zwanenburg F A, Jamieson D N, Dzurak A S and Morello A 2013 Nature 496 334
[5] Laucht A, Muhonen J T, Mohiyaddin F A, Kalra R, Dehollain J P, Freer S, Hudson F E, Veldhorst M, Rahman R, Klimeck G, et al. 2015 Sci. Adv. 1 e1500022
[6] Bradbury F R, Tyryshkin A M, Sabouret G, Bokor J, Schenkel T and Lyon S A 2006 Phys. Rev. Lett. 97 176404
[7] Lo C C, Simmons S, Lo Nardo R, Weis C D, Tyryshkin A M, Meijer J, Rogalla D, Lyon S A, Bokor J, Schenkel T, et al. 2014 Appl. Phys. Lett. 104 193502
[8] Pica G, Wolfowicz G, Urdampilleta M, Thewalt M L W, Riemann H, Abrosimov N V, Becker P, Pohl H, Morton J J L, Bhatt R N, et al. 2014 Phys. Rev. B 90 195204
[9] Huebl H, Stegner A R, Stutzmann M, Brandt M S, Vogg G, Bensch F, Rauls E and Gerstmann U 2006 Phys. Rev. Lett. 97 166402
[10] Mansir J, Conti P, Zeng Z, Pla J J, Bertet P, Swift M W, Van De Walle C G, Thewalt M L W, Sklenard B, Niquet Y M, et al. 2018 Phys. Rev. Lett. 120 167701
[11] Dreher L, Hilker T A, Brandlmaier A, Goennenwein S T B, Huebl H, Stutzmann M and Brandt M S 2011 Phys. Rev. Lett. 106 37601
[12] Usman M, Hill C D, Rahman R, Klimeck G, Simmons M Y, Rogge S and Hollenberg L C L 2015 Phys. Rev. B 91 245209
[13] Koiller B, Hu X and Das Sarma S 2001 Phys. Rev. Lett. 88 27903
[14] Wellard C J and Hollenberg L C L 2005 Phys. Rev. B 72 85202
[15] Friesen M 2005 Phys. Rev. Lett. 94 186403
[16] Rahman R, Wellard C J, Bradbury F R, Prada M, Cole J H, Klimeck G and Hollenberg L C L 2007 Phys. Rev. Lett. 99 36403
[17] Usman M, Rahman R, Salfi J, Bocquel J, Voisin B, Rogge S, Klimeck G and Hollenberg L C L 2015 J. Phys.: Condens. Matter 27 154207
[18] Overhof H and Gerstmann U 2004 Phys. Rev. Lett. 92 87602
[19] Swift M W, Peelaers H, Mu S, Morton J J L and Van De Walle C G 2020 Npj Comput. Mater. 6 181
[20] Ma H, Hsueh Y, Monir S, Jiang Y and Rahman R 2022 Commun. Phys. 5 165
[21] Zhang G, Canning A, Grønbech-Jensen N, Derenzo S andWang L 2013 Phys. Rev. Lett. 110 166404
[22] Wang L 2009 J. Appl. Phys. 105 123712
[23] Kang J and Wang L 2022 Phys. Rev. Appl. 18 64001
[24] Wang L and Zunger A 1994 J. Chem. Phys. 100 2394
[25] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[26] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[27] Jia W, Cao Z, Wang L, Fu J, Chi X, Gao W and Wang L 2013 Comput. Phys. Commun. 184 9
[28] Jia W, Fu J, Cao Z, Wang L, Chi X, Gao W and Wang L 2013 J. Comput. Phys. 251 102
[29] Troullier N and Martins J 1990 Solid State Commun. 74 613
[30] Yu P Y and Cardona M 2010 Fundamentals of Semiconductors (Berlin: Springer) p. 198
[31] Ramdas A K and Rodriguez S 1981 Rep. Prog. Phys. 44 1297
[32] Bouhassoune M and Schindlmayr A 2010 Phys. Status Solidi C 7 460
[33] Wilson D K and Feher G 1961 Phys. Rev. 124 1068
[34] Tekippe V J, Chandrasekhar H R, Fisher P and Ramdas A K 1972 Phys. Rev. B 6 2348
[35] Fuhrer A, Füchsle M, Reusch T C G,Weber B and SimmonsMY 2009 Nano Lett. 9 707
[1] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[2] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[3] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[4] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[5] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[6] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[7] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[8] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[9] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[10] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[11] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[12] Optical properties of La2O3 and HfO2 for radiative cooling via multiscale simulations
Lihao Wang(王礼浩), Wanglin Yang(杨旺霖), Zhongyang Wang(王忠阳), Hongchao Li(李鸿超), Hao Gong(公昊), Jingyi Pan(潘静怡), Tongxiang Fan(范同祥), and Xiao Zhou(周啸). Chin. Phys. B, 2024, 33(12): 127801.
[13] Higher-order topological corner states and origin in monolayer LaBrO
Qing Wang(王庆) and Ning Hao(郝宁). Chin. Phys. B, 2024, 33(12): 127303.
[14] A novel MgHe compound under high pressure
Jurong Zhang(张车荣), Lebin Chang(常乐斌), Suchen Ji(纪苏宸), Lanci Guo(郭兰慈), and Yuhao Fu(付钰豪). Chin. Phys. B, 2024, 33(11): 116202.
[15] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
No Suggested Reading articles found!