Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 047305    DOI: 10.1088/1674-1056/adbacb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First principles prediction of the valley Hall effect in ScBrCl monolayer

Xiang Yu(于翔), Ping Li(李萍), and Chang-Wen Zhang(张昌文)†
School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan 250022, China
Abstract  Two-dimensional (2D) ferrovalley materials with valley-dependent Hall effect have attracted great interest due to their significant applications in spintronics. In this paper, by using first-principles computational simulations, we predict that the ScBrCl monolayer is a 2D ferrovalley material with valley-dependent multiple Hall effects. After calculations, we found that the ScBrCl monolayer has excellent thermodynamic stability and kinetic stability, and has a high magnetic transition temperature. When the magnetization direction is turned from in-plane to out-of-plane, a large valley polarization of 44 meV can be generated. In particular, under 5.1%-5.3% tensile strain conditions, ScBrCl monolayer can achieve quantum anomalous Hall effect, and further prove its existence through non-zero Chern number and non-trivial edge state. Our discovery enriches the research on valley-dependent Hall effect and promotes the potential application of 2D Janus monolayer in valley electronics.
Keywords:  valley polarization      valley-dependent Hall effect      band structure      spintronics  
Received:  19 September 2024      Revised:  07 February 2025      Accepted manuscript online:  27 February 2025
PACS:  73.43.-f (Quantum Hall effects)  
  75.50.Pp (Magnetic semiconductors)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52173283).
Corresponding Authors:  Chang-Wen Zhang     E-mail:  ss_zhangchw@ujn.edu.cn

Cite this article: 

Xiang Yu(于翔), Ping Li(李萍), and Chang-Wen Zhang(张昌文) First principles prediction of the valley Hall effect in ScBrCl monolayer 2025 Chin. Phys. B 34 047305

[1] Han Y T, Ji W X, Wang P J, Li P and Zhang C W 2023 Nanoscale 15 6830
[2] Fert A 2008 Rev. Mod. Phys. 80 1517
[3] He R, Wang D, Luo N, Zeng J, Chen K Q and Tang L M 2023 Phys. Rev. Lett. 130 046401
[4] Li S S, JiWX, Hu S J, Zhang CWand Yan S S 2017 ACS Appl. Mater. Interfaces 9 41443
[5] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101
[6] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226
[7] Allen M J, Tung V C and Kaner R B 2010 Chem. Rev. 110 132
[8] Zeng M, Xiao Y, Liu J, Yang K and Fu L 2018 Chem. Rev. 13 6236
[9] Mak K F, Xiao D and Shan J 2018 Nat. Photon. 12 451
[10] Luo J, Meng H, Xue X X, Chen K Q and Tang L M 2024 Phys. Rev. B 110 085401
[11] Li Q, Chen K Q and Tang L M 2020 Phys. Rev. Appl. 13 014064
[12] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[13] Yamamoto M, Shimazaki Y, Borzenets I V and Tarucha S 2015 J. Phys. Soc. Jpn. 84 121006
[14] Sui M, et al. 2015 Nat. Phys. 11 1027
[15] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489
[16] Gorbachev R V, et al. 2014 Science 346 448
[17] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[18] Wang Y Z, Yang W, Zhang H and Xu X 2024 Chin. Phys. B 33 17306
[19] Zhao J J, Liu G B, Chen P, Yao Y G, Zhang G Y and Du L J 2024 Chin. Phys. Lett. 41 066801
[20] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[21] Zhou T, Zhang J, Jiang H, Zutić I and Yang Z 2018 npj Quantum Mater. 3 39
[22] Hu H, Tong W Y, Shen Y H, Wan X and Duan C G 2020 npj Comput. Mater. 6 129
[23] Hu C S, Wu Y J, Liu Y S, Fu S, Cui X N, Wang Y H and Zhang C W 2023 Chin. Phys. B 32 037306
[24] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112
[25] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[26] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[27] Aivazian G, et al. 2015 Nat. Phys. 11 148
[28] Xu L, Yang M, Shen L, Zhou J, Zhu T and Feng Y P 2018 Phys. Rev. B 97 041405
[29] Lu H Z, YaoW, Xiao D and Shen S Q 2013 Phys. Rev. Lett. 110 016806
[30] MacNeill D, Heikes C, Mak K F, Anderson Z, Kormányos A, Zólyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401
[31] Zhang T, Ma Y, Xu X, Lei C, Huang B and Dai Y 2020 J. Phys. Chem. C. 124 20598
[32] Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A and Zeng H 2019 Nat. Commun. 10 4163
[33] Zhang Q, Yang S A, Mi W, Cheng Y and Schwingenschlögl U 2016 Adv. Mater. 28 959
[34] Huang B, et al. 2017 Nature 546 270
[35] Sheng K, Zhang B, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 195312
[36] Cheng H X, Zhou J, Ji W, Zhang Y N and Feng Y P 2021 Phys. Rev. B 103 125121
[37] Luo C, Peng X, Qu J and Zhong J 2020 Phys. Rev. B 101 245416
[38] Liu P, Liu S, Jia M, Yin H, Zhang G, Ren F, Wang B and Liu C 2022 Appl. Phys. Lett. 121 063103
[39] Huang B, Liu W Y, Wu X C, Li S Z, Li H, Yang Z and Zhang W B 2023 Phys. Rev. B 107 045423
[40] Guo S D, Wang M X, Tao Y L and Liu B G 2023 Phys. Chem. Chem. Phys. 25 796
[41] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[42] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[44] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[45] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[46] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[47] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[48] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[49] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[50] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[51] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[52] Bucher D, Pierce L C T, McCammon J A and Markwick P R L 2011 J. Chem. Theory Comput. 7 890
[53] Kim H J, Li C, Feng J, Cho J H and Zhang Z 2016 Phys. Rev. B 93 041404
[54] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[55] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[56] Wu Q, Zhang S, Song H F, TroyerMand Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[57] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[58] Zhang J, et al. 2017 ACS Nano 11 8192
[59] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Phys. Rev. B 85 125428
[60] Sheng K, Chen Q, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 075304
[61] Jiang P, Kang L, Li Y L, Zheng X, Zeng Z and Sanvito S 2021 Phys. Rev. B 104 035430
[62] Zhang S, Xu R, Duan W and Zou X 2019 Adv. Funct. Mater. 29 1808380
[63] Wu Y, Sun W, Liu S, Wang B, Liu C, Yin H and Cheng Z 2021 Nanoscale 13 16564
[64] Li X, Wu X, Li Z, Yang J and Hou J G 2012 Nanoscale 4 5680
[65] Whangbo M H, Gordon E E, Xiang H, Koo H J and Lee C 2015 Acc. Chem. Res. 48 3080
[66] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612
[67] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
[68] Thouless D J, Kohmoto M, NightingaleMP and den Nijs M 1982 Phys. Rev. Lett. 49 405
[69] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[70] Liu C, Fu B, Yin H, Zhang G and Dong C 2020 Appl. Phys. Lett. 117 103101
[71] Liu P, Zhang G, Yan Y, Jia G, Liu C, Wang B and Yin H 2021 Appl. Phys. Lett. 119 102403
[72] Liu C, Wang B, Jia G, Liu P, Yin H, Guan S and Cheng Z 2021 Appl. Phys. Lett. 118 072902
[73] Liu S, Yin H, Singh D J and Liu P F 2022 Phys. Rev. B 105 195419
[74] Guo X S and Guo S D 2023 Phys. Chem. Chem. Phys. 25 18577
[75] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[76] Zhou J, Sun Q and Jena P 2017 Phys. Rev. Lett. 119 046403
[77] Wu B, Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B 107 214419
[78] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[1] Electronic structure, elasticity, magnetism of Mn2XIn(X =Fe, Co) full Heusler compounds under biaxial strain: First-principles calculations
Shiran Gao(皋世苒), Chengyang Zhao(赵成洋), Xinzhuo Zhang(张欣卓), Wen Qiao(乔文), Shiming Yan(颜士明), Ru Bai(白茹), and Tiejun Zhou(周铁军). Chin. Phys. B, 2025, 34(1): 017501.
[2] Experimental observation of Fermi-level flat band in novel kagome metal CeNi5
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波). Chin. Phys. B, 2024, 33(8): 087402.
[3] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[4] RKKY interaction in helical higher-order topological insulators
Sha Jin(金莎), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2024, 33(7): 077503.
[5] Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device
Xiao-Long Lü(吕小龙), Jia-En Yang(杨加恩), and Hang Xie(谢航). Chin. Phys. B, 2024, 33(6): 068502.
[6] Reanalysis of energy band structure in the type-II quantum wells
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(6): 067302.
[7] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[8] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[9] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[10] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[11] Band structures of strained kagome lattices
Luting Xu(徐露婷) and Fan Yang(杨帆). Chin. Phys. B, 2024, 33(2): 027101.
[12] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[13] Polarity-controllable magnetic skyrmion filter
Xiao-Lin Ai(艾啸林), Hui-Ting Li(李慧婷), Xue-Feng Zhang(张雪枫), Chang-Feng Li(李昌锋), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2024, 33(10): 107502.
[14] The de Haas-van Alphen quantum oscillations in the kagome metal RbTi3Bi5
Zixian Dong(董自仙), Lei Shi(石磊), Bin Wang(王彬), Mengwu Huo(霍梦五), Xing Huang(黄星), Chaoxin Huang(黄潮欣), Peiyue Ma(马培跃), Yunwei Zhang(张云蔚), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2024, 33(10): 107102.
[15] Spin-orbit torque effect in silicon-based sputtered Mn3Sn film
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒). Chin. Phys. B, 2024, 33(10): 107501.
No Suggested Reading articles found!