Abstract Two-dimensional (2D) ferrovalley materials with valley-dependent Hall effect have attracted great interest due to their significant applications in spintronics. In this paper, by using first-principles computational simulations, we predict that the ScBrCl monolayer is a 2D ferrovalley material with valley-dependent multiple Hall effects. After calculations, we found that the ScBrCl monolayer has excellent thermodynamic stability and kinetic stability, and has a high magnetic transition temperature. When the magnetization direction is turned from in-plane to out-of-plane, a large valley polarization of 44 meV can be generated. In particular, under 5.1%-5.3% tensile strain conditions, ScBrCl monolayer can achieve quantum anomalous Hall effect, and further prove its existence through non-zero Chern number and non-trivial edge state. Our discovery enriches the research on valley-dependent Hall effect and promotes the potential application of 2D Janus monolayer in valley electronics.
Xiang Yu(于翔), Ping Li(李萍), and Chang-Wen Zhang(张昌文) First principles prediction of the valley Hall effect in ScBrCl monolayer 2025 Chin. Phys. B 34 047305
[1] Han Y T, Ji W X, Wang P J, Li P and Zhang C W 2023 Nanoscale 15 6830 [2] Fert A 2008 Rev. Mod. Phys. 80 1517 [3] He R, Wang D, Luo N, Zeng J, Chen K Q and Tang L M 2023 Phys. Rev. Lett. 130 046401 [4] Li S S, JiWX, Hu S J, Zhang CWand Yan S S 2017 ACS Appl. Mater. Interfaces 9 41443 [5] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101 [6] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226 [7] Allen M J, Tung V C and Kaner R B 2010 Chem. Rev. 110 132 [8] Zeng M, Xiao Y, Liu J, Yang K and Fu L 2018 Chem. Rev. 13 6236 [9] Mak K F, Xiao D and Shan J 2018 Nat. Photon. 12 451 [10] Luo J, Meng H, Xue X X, Chen K Q and Tang L M 2024 Phys. Rev. B 110 085401 [11] Li Q, Chen K Q and Tang L M 2020 Phys. Rev. Appl. 13 014064 [12] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [13] Yamamoto M, Shimazaki Y, Borzenets I V and Tarucha S 2015 J. Phys. Soc. Jpn. 84 121006 [14] Sui M, et al. 2015 Nat. Phys. 11 1027 [15] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [16] Gorbachev R V, et al. 2014 Science 346 448 [17] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [18] Wang Y Z, Yang W, Zhang H and Xu X 2024 Chin. Phys. B 33 17306 [19] Zhao J J, Liu G B, Chen P, Yao Y G, Zhang G Y and Du L J 2024 Chin. Phys. Lett. 41 066801 [20] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802 [21] Zhou T, Zhang J, Jiang H, Zutić I and Yang Z 2018 npj Quantum Mater. 3 39 [22] Hu H, Tong W Y, Shen Y H, Wan X and Duan C G 2020 npj Comput. Mater. 6 129 [23] Hu C S, Wu Y J, Liu Y S, Fu S, Cui X N, Wang Y H and Zhang C W 2023 Chin. Phys. B 32 037306 [24] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112 [25] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [26] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [27] Aivazian G, et al. 2015 Nat. Phys. 11 148 [28] Xu L, Yang M, Shen L, Zhou J, Zhu T and Feng Y P 2018 Phys. Rev. B 97 041405 [29] Lu H Z, YaoW, Xiao D and Shen S Q 2013 Phys. Rev. Lett. 110 016806 [30] MacNeill D, Heikes C, Mak K F, Anderson Z, Kormányos A, Zólyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401 [31] Zhang T, Ma Y, Xu X, Lei C, Huang B and Dai Y 2020 J. Phys. Chem. C. 124 20598 [32] Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A and Zeng H 2019 Nat. Commun. 10 4163 [33] Zhang Q, Yang S A, Mi W, Cheng Y and Schwingenschlögl U 2016 Adv. Mater. 28 959 [34] Huang B, et al. 2017 Nature 546 270 [35] Sheng K, Zhang B, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 195312 [36] Cheng H X, Zhou J, Ji W, Zhang Y N and Feng Y P 2021 Phys. Rev. B 103 125121 [37] Luo C, Peng X, Qu J and Zhong J 2020 Phys. Rev. B 101 245416 [38] Liu P, Liu S, Jia M, Yin H, Zhang G, Ren F, Wang B and Liu C 2022 Appl. Phys. Lett. 121 063103 [39] Huang B, Liu W Y, Wu X C, Li S Z, Li H, Yang Z and Zhang W B 2023 Phys. Rev. B 107 045423 [40] Guo S D, Wang M X, Tao Y L and Liu B G 2023 Phys. Chem. Chem. Phys. 25 796 [41] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [42] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [44] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [45] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [46] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891 [47] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467 [48] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [49] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [50] Gonze X and Lee C 1997 Phys. Rev. B 55 10355 [51] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [52] Bucher D, Pierce L C T, McCammon J A and Markwick P R L 2011 J. Chem. Theory Comput. 7 890 [53] Kim H J, Li C, Feng J, Cho J H and Zhang Z 2016 Phys. Rev. B 93 041404 [54] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [55] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [56] Wu Q, Zhang S, Song H F, TroyerMand Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [57] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309 [58] Zhang J, et al. 2017 ACS Nano 11 8192 [59] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Phys. Rev. B 85 125428 [60] Sheng K, Chen Q, Yuan H K and Wang Z Y 2022 Phys. Rev. B 105 075304 [61] Jiang P, Kang L, Li Y L, Zheng X, Zeng Z and Sanvito S 2021 Phys. Rev. B 104 035430 [62] Zhang S, Xu R, Duan W and Zou X 2019 Adv. Funct. Mater. 29 1808380 [63] Wu Y, Sun W, Liu S, Wang B, Liu C, Yin H and Cheng Z 2021 Nanoscale 13 16564 [64] Li X, Wu X, Li Z, Yang J and Hou J G 2012 Nanoscale 4 5680 [65] Whangbo M H, Gordon E E, Xiang H, Koo H J and Lee C 2015 Acc. Chem. Res. 48 3080 [66] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612 [67] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204 [68] Thouless D J, Kohmoto M, NightingaleMP and den Nijs M 1982 Phys. Rev. Lett. 49 405 [69] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [70] Liu C, Fu B, Yin H, Zhang G and Dong C 2020 Appl. Phys. Lett. 117 103101 [71] Liu P, Zhang G, Yan Y, Jia G, Liu C, Wang B and Yin H 2021 Appl. Phys. Lett. 119 102403 [72] Liu C, Wang B, Jia G, Liu P, Yin H, Guan S and Cheng Z 2021 Appl. Phys. Lett. 118 072902 [73] Liu S, Yin H, Singh D J and Liu P F 2022 Phys. Rev. B 105 195419 [74] Guo X S and Guo S D 2023 Phys. Chem. Chem. Phys. 25 18577 [75] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [76] Zhou J, Sun Q and Jena P 2017 Phys. Rev. Lett. 119 046403 [77] Wu B, Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B 107 214419 [78] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.