| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect |
| Ke Wu(吴可)1, Zeyi Du(杜泽依)1, Hongyang Liu(刘洪洋)1, Nanyun Bao(包南云)1, Chengke Xu(许成科)1, Hongrui Wang(王泓睿)1, Qunchao Tong(童群超)1,2,3,†, Bo Chen(陈博)1,2,3, Dongdong Kang(康冬冬)1,2,3, Guang Wang(王广)1, and Jiayu Dai(戴佳钰)1,2,3,‡ |
1 College of Science, National University of Defense Technology, Changsha 410073, China; 2 Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China; 3 Hunan Research Center of the Basic Discipline for Physical States, National University of Defense Technology, Changsha 410073, China |
|
|
|
|
Abstract Diamond is a promising semiconductor material for future space exploration, owing to its unique atomic and electronic structures. However, diamond materials and related devices still suffer from irradiation damage under space irradiation involving high-energy irradiating particles. The study of the generation and evolution of point defects can help understand the irradiation damage mechanisms in diamond. This study systematically investigated the defect dynamics of diamond in 162 crystallographic directions uniformly selected on a spherical surface using molecular dynamics simulations, with primary knock-on atom (PKA) energies up to 20 keV, and temperatures ranging from 300 K to 1800 K. The results reveal that the displacement threshold energy of diamond changes periodically with crystallographic directions, which is related to the shape of potential energy surface along that direction. Additionally, the number of residual defects correlates positively with PKA energy. However, temperature has dual competing effects: while it enhances the probability of atomic displacement, it simultaneously suppresses the probability of defect formation by accelerating defect recombination. The calculation of sparse radial distribution function indicates that the defect distribution shows a certain degree of similarity in the short-range region across different PKA energies. As the PKA energy increases, defect clusters tend to become larger in size and more numerous in quantity. This study systematically investigates the anisotropy of displacement threshold energy and elucidates the relationship between various irradiation conditions and the final states of irradiation-induced defects.
|
Received: 20 February 2025
Revised: 28 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
71.15.Pd
|
(Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)
|
| |
61.80.Lj
|
(Atom and molecule irradiation effects)
|
|
| Fund: Project supported by the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2021RC4026), the National Natural Science Foundation of China (Grant Nos. 12204538, 12104507, and 92365203), and Hunan Provincial Science Fund for Distinguished Young Scholars (Grant No. 2022JJ10060). |
Corresponding Authors:
Qunchao Tong, Jiayu Dai
E-mail: tongqunchao@nudt.edu.cn;jydai@nudt.edu.cn
|
Cite this article:
Ke Wu(吴可), Zeyi Du(杜泽依), Hongyang Liu(刘洪洋), Nanyun Bao(包南云), Chengke Xu(许成科), Hongrui Wang(王泓睿), Qunchao Tong(童群超), Bo Chen(陈博), Dongdong Kang(康冬冬), Guang Wang(王广), and Jiayu Dai(戴佳钰) Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect 2025 Chin. Phys. B 34 087104
|
[1] Zamboni I, Pastuović Z and Jakšić M 2013 Diam. Relat. Mater. 31 65 [2] Pearton S, Aitkaliyeva A, Xian M, Ren F, Khachatrian A, Ildefonso A, Islam Z, Rasel M A J, Haque A and Polyakov A Y 2021 ECS J. Solid State Sci. Technol. 10 055008 [3] Xu J, Dai J, Ren F Z, Wang Y F, Wang P, Xu S S, Wu S D, Lin J J, Yang Y and Guo D J 2021 Carbon 182 525 [4] Zhou C, Liu Z J, Dou X L, Wu L, Guo Y, Li Z G and Zhang C R 2025 Vacuum 233 113935 [5] Wang Y and Sun B 2024 Appl. Phys. Lett. 125 042202 [6] Zheng Y H, Lu S H and Hu X J 2024 Carbon 226 119210 [7] Rezek B,Watanabe H and Nebel C E 2006 Appl. Phys. Lett. 88 042110 [8] Rogalin V E, Ashkenazi E E, Popovich A F, Ralchenko V G, Konov V I, Aranchii S M, Ruzin M V and Uspenskii S A 2012 Russ. Microelectron 41 464 [9] Long Z M, Ben X Y, Jun W L and Bei G B 2005 Chin. Phys. Lett. 22 1264 [10] Xu B and Tian Y J 2020 Matter Radiat. at Extremes 5 068103 [11] Manfredotti C 2005 Diam. Relat. Mater. 14 531 [12] Trucchi D M, Allegrini P, Calvani P, Galbiati A, Oliver K and Conte G 2012 IEEE Electron Dev. Lett. 33 615 [13] Hirao N, Kawaguchi S I, Hirose K, Shimizu K, Ohtani E and Ohishi Y 2020 Matter Radiat. at Extremes 5 68 [14] Zeng Q S 2023 Matter Radiat. at Extremes 8 028101 [15] Shvydko Y, Stoupin S, Blank V and Terentyev S 2011 Nat. Photon. 5 539 [16] GallinML, Kim Y, Abbassi L, Bes A, Boiano C, Brambilla S, Collot J, Colombi G, Crozes T, Curtoni S, Dauvergne D, Destouches C, Donatini F, Gallin L, Ghouini O, Hostachy J Y, Iskra L, Jastrzab M, Kessedjian G, Lacoste A, Lyoussi A, Marcatili S, Motte J, Muraz J F, Nowak T, Ottaviani L, Pernot J, Portier A, Rahajandraibe W, Ramdhane M, Rydygier M, Sage C, Tchoualack A, Tribouilloy L and Yamouni M 2021 Front. Phys 9 732730 [17] Ueno K, Tadokoro T and Ueno Y 2019 Jpn. J. Appl. Phys. 58 106509 [18] Cui J M, Chen X D, Fan L L, Gong Z J, Zou C W, Sun F W, Han Z F and Guo G C 2012 Chin. Phys. Lett. 29 036103 [19] Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F,WeberWJ,Willaime F, Dudarev S L and Simeone D 2018 J. Nucl. Mater. 512 450 [20] Wang Y, Lai W S and Li J H 2020 Chin. Phys. Lett. 37 016103 [21] Liu Y, Wang G, Wang S C, Yang J H, Chen L A, Qin X B, Song B, Wang B Y and Chen X L 2011 Phys. Rev. Lett. 106 087205 [22] Wang K Y, Steeds J W, Li Z H and Wang H X 2017 Appl. Phys. Lett. 110 152101 [23] Wang B, Xiong Y, Xia L S, Zhang H, Zhang K Z and Meng X Q 2011 Diam. Relat. Mater. 20 433 [24] Hickey D P, Jones K S and Elliman R G 2009 Diam. Relat. Mater. 18 1353 [25] Ardalkar R M, Salunkhe Y D, Gaonkar M P, Mane S N, Ghaisas O A, Desai S N and Reddy A V R 2024 J. Min. Inst. 266 179 [26] Salustro S, Nöel Y, M. Z C, Olivero P and Dovesi R 2016 J. Chem. Phys. 145 184701 [27] Laidlaw F, Beanland R, Fisher D and Diggle P L 2020 Acta Mater. 201 494 [28] Guo F Y, Chen B, Zeng Q Y, Yu X X, Chen K G, Kang D D, Du Y, Wu J H and Dai J Y 2023 J. Chem. Phys. 159 1089 [29] Zeng Q Y, Chen B, Zhang S, Kang D D, Wang H, Yu X X and Dai J Y 2023 npj Comput. Mater. 9 213 [30] Wang H, Guo X, Zhang L, Wang H and Xue J 2019 Appl. Phys. Lett. 114 244101 [31] Liu J H, Byggmästar J, Fan Z Y, Qian P and Su Y Y 2023 Phys. Rev. B 108 054312 [32] Li Y, Kang D D, Dai J Y and Wang L W 2024 npj Comput. Mater. 10 115 [33] Li W, Zhao H, Zeng X G, Yang X, Chi M H and Gao Y P 2025 Nucl. Instrum. Methods Phys. Res. B 559 165608 [34] Wang W L, Wang K and Deng W J 2024 Int. J. Mod. Phys. B 38 2450219 [35] Yu L T, Fan C, Gao Q Z and Lv L X 2024 J. Phys. Conf. Ser. 2882 012088 [36] Fu B, Fitzgerald S, Hou Q,Wang J and Li M 2017 Nucl. Instrum. Methods Phys. Res. B 393 169 [37] Robinson M, Marks N, Whittle K and Lumpkin G 2012 Phys. Rev. B 85 104105 [38] Guo P F, Song C Z, Wu Y N and Chen S Y 2024 Adv. Electron. Mater 10 2400014 [39] Wang D, Gao N, Setyawan W, Kurtz R J, Wang Z G, Gao X, He W H and Pang L L 2016 Chin. Phys. Lett. 33 096102 [40] Norgett M, Robinson M and Torrens I M 1975 Nucl. Eng. Des 33 50 [41] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818 [42] Wu W and Fahy S 1994 Phys. Rev. B 49 3030 [43] Zhou Y, Chen B, He H Y, Li B and Wang X L 2020 Nucl. Technol. 206 32 [44] Holmström E, Nordlund K and Kuronen A 2010 Phys. Scr. 81 035601 [45] Erginsoy C, Vineyard G and Englert A 1964 Phys. Rev. 133 A595 [46] Delgado D and Vila R 2011 J. Nucl. Mater. 419 32 [47] Jin Y N, Huang H, Zhong Y H, Yuan X T, Li H, Lou D, Xie K, Liu Z X, Cai B and Peng Q 2022 Ceram. Int. 48 16813 [48] Buchan J T, Robinson M, Christie H J, Roach D L, Ross D K and Marks N A 2015 J. Appl. Phys. 117 245901 [49] Liu T, Shao T, Lyu F, Lai X and Shen A H 2022 Model. Simul. Mater. Sci. Eng. 30 035005 [50] Delgado D and Vila R 2011 J. Nucl. Mater. 419 32 [51] Devanathan R, Diaz de la Rubia T andWeberWJ 1998 J. Nucl. Mater. 253 47 [52] Ziegler J F and Biersack J P 1985 The Stopping and Range of Ions in Matter (Boston: Springer) p. 93 [53] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012 [54] Saada D, Adler J and Kalish R 1999 Phys. Rev. B 59 6650 [55] Prins J, Derry T and Sellschop J 1986 Phys. Rev. B 34 8870 [56] Koike J, Parkin D and Mitchell T 1992 Appl. Phys. Lett. 60 1450 [57] Robinson M, Marks N A and Lumpkin G R 2012 Phys. Rev. B 86 134105 [58] Brenner D W and Shenderova O A 2015 Phil. Trans. R. Soc. A. 373 20140139 [59] Slepetz B K, Miklos 2014 Phys. Chem. Chem. Phys. 16 1515 [60] Mainwood A 1999 Diam. Relat. Mater. 8 1560 [61] Setyawan W, Nandipati G, Roche K J, Heinisch H L, Wirth B D and Kurtz R J 2015 J. Nucl. Mater. 462 329 [62] Fu J, Chen Y C, Fang J Z, Gao N, Hu W Y, Jiang C, Zhou H B, Lu G H, Gao F and Deng H Q 2019 J. Nucl. Mater. 524 9 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|