Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087104    DOI: 10.1088/1674-1056/add4f8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect

Ke Wu(吴可)1, Zeyi Du(杜泽依)1, Hongyang Liu(刘洪洋)1, Nanyun Bao(包南云)1, Chengke Xu(许成科)1, Hongrui Wang(王泓睿)1, Qunchao Tong(童群超)1,2,3,†, Bo Chen(陈博)1,2,3, Dongdong Kang(康冬冬)1,2,3, Guang Wang(王广)1, and Jiayu Dai(戴佳钰)1,2,3,‡
1 College of Science, National University of Defense Technology, Changsha 410073, China;
2 Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China;
3 Hunan Research Center of the Basic Discipline for Physical States, National University of Defense Technology, Changsha 410073, China
Abstract  Diamond is a promising semiconductor material for future space exploration, owing to its unique atomic and electronic structures. However, diamond materials and related devices still suffer from irradiation damage under space irradiation involving high-energy irradiating particles. The study of the generation and evolution of point defects can help understand the irradiation damage mechanisms in diamond. This study systematically investigated the defect dynamics of diamond in 162 crystallographic directions uniformly selected on a spherical surface using molecular dynamics simulations, with primary knock-on atom (PKA) energies up to 20 keV, and temperatures ranging from 300 K to 1800 K. The results reveal that the displacement threshold energy of diamond changes periodically with crystallographic directions, which is related to the shape of potential energy surface along that direction. Additionally, the number of residual defects correlates positively with PKA energy. However, temperature has dual competing effects: while it enhances the probability of atomic displacement, it simultaneously suppresses the probability of defect formation by accelerating defect recombination. The calculation of sparse radial distribution function indicates that the defect distribution shows a certain degree of similarity in the short-range region across different PKA energies. As the PKA energy increases, defect clusters tend to become larger in size and more numerous in quantity. This study systematically investigates the anisotropy of displacement threshold energy and elucidates the relationship between various irradiation conditions and the final states of irradiation-induced defects.
Keywords:  displacement cascades      diamond      molecular dynamics      temperature effect  
Received:  20 February 2025      Revised:  28 April 2025      Accepted manuscript online:  07 May 2025
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  61.80.Lj (Atom and molecule irradiation effects)  
Fund: Project supported by the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2021RC4026), the National Natural Science Foundation of China (Grant Nos. 12204538, 12104507, and 92365203), and Hunan Provincial Science Fund for Distinguished Young Scholars (Grant No. 2022JJ10060).
Corresponding Authors:  Qunchao Tong, Jiayu Dai     E-mail:  tongqunchao@nudt.edu.cn;jydai@nudt.edu.cn

Cite this article: 

Ke Wu(吴可), Zeyi Du(杜泽依), Hongyang Liu(刘洪洋), Nanyun Bao(包南云), Chengke Xu(许成科), Hongrui Wang(王泓睿), Qunchao Tong(童群超), Bo Chen(陈博), Dongdong Kang(康冬冬), Guang Wang(王广), and Jiayu Dai(戴佳钰) Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect 2025 Chin. Phys. B 34 087104

[1] Zamboni I, Pastuović Z and Jakšić M 2013 Diam. Relat. Mater. 31 65
[2] Pearton S, Aitkaliyeva A, Xian M, Ren F, Khachatrian A, Ildefonso A, Islam Z, Rasel M A J, Haque A and Polyakov A Y 2021 ECS J. Solid State Sci. Technol. 10 055008
[3] Xu J, Dai J, Ren F Z, Wang Y F, Wang P, Xu S S, Wu S D, Lin J J, Yang Y and Guo D J 2021 Carbon 182 525
[4] Zhou C, Liu Z J, Dou X L, Wu L, Guo Y, Li Z G and Zhang C R 2025 Vacuum 233 113935
[5] Wang Y and Sun B 2024 Appl. Phys. Lett. 125 042202
[6] Zheng Y H, Lu S H and Hu X J 2024 Carbon 226 119210
[7] Rezek B,Watanabe H and Nebel C E 2006 Appl. Phys. Lett. 88 042110
[8] Rogalin V E, Ashkenazi E E, Popovich A F, Ralchenko V G, Konov V I, Aranchii S M, Ruzin M V and Uspenskii S A 2012 Russ. Microelectron 41 464
[9] Long Z M, Ben X Y, Jun W L and Bei G B 2005 Chin. Phys. Lett. 22 1264
[10] Xu B and Tian Y J 2020 Matter Radiat. at Extremes 5 068103
[11] Manfredotti C 2005 Diam. Relat. Mater. 14 531
[12] Trucchi D M, Allegrini P, Calvani P, Galbiati A, Oliver K and Conte G 2012 IEEE Electron Dev. Lett. 33 615
[13] Hirao N, Kawaguchi S I, Hirose K, Shimizu K, Ohtani E and Ohishi Y 2020 Matter Radiat. at Extremes 5 68
[14] Zeng Q S 2023 Matter Radiat. at Extremes 8 028101
[15] Shvydko Y, Stoupin S, Blank V and Terentyev S 2011 Nat. Photon. 5 539
[16] GallinML, Kim Y, Abbassi L, Bes A, Boiano C, Brambilla S, Collot J, Colombi G, Crozes T, Curtoni S, Dauvergne D, Destouches C, Donatini F, Gallin L, Ghouini O, Hostachy J Y, Iskra L, Jastrzab M, Kessedjian G, Lacoste A, Lyoussi A, Marcatili S, Motte J, Muraz J F, Nowak T, Ottaviani L, Pernot J, Portier A, Rahajandraibe W, Ramdhane M, Rydygier M, Sage C, Tchoualack A, Tribouilloy L and Yamouni M 2021 Front. Phys 9 732730
[17] Ueno K, Tadokoro T and Ueno Y 2019 Jpn. J. Appl. Phys. 58 106509
[18] Cui J M, Chen X D, Fan L L, Gong Z J, Zou C W, Sun F W, Han Z F and Guo G C 2012 Chin. Phys. Lett. 29 036103
[19] Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R E, Suzudo T, Malerba L, Banhart F,WeberWJ,Willaime F, Dudarev S L and Simeone D 2018 J. Nucl. Mater. 512 450
[20] Wang Y, Lai W S and Li J H 2020 Chin. Phys. Lett. 37 016103
[21] Liu Y, Wang G, Wang S C, Yang J H, Chen L A, Qin X B, Song B, Wang B Y and Chen X L 2011 Phys. Rev. Lett. 106 087205
[22] Wang K Y, Steeds J W, Li Z H and Wang H X 2017 Appl. Phys. Lett. 110 152101
[23] Wang B, Xiong Y, Xia L S, Zhang H, Zhang K Z and Meng X Q 2011 Diam. Relat. Mater. 20 433
[24] Hickey D P, Jones K S and Elliman R G 2009 Diam. Relat. Mater. 18 1353
[25] Ardalkar R M, Salunkhe Y D, Gaonkar M P, Mane S N, Ghaisas O A, Desai S N and Reddy A V R 2024 J. Min. Inst. 266 179
[26] Salustro S, Nöel Y, M. Z C, Olivero P and Dovesi R 2016 J. Chem. Phys. 145 184701
[27] Laidlaw F, Beanland R, Fisher D and Diggle P L 2020 Acta Mater. 201 494
[28] Guo F Y, Chen B, Zeng Q Y, Yu X X, Chen K G, Kang D D, Du Y, Wu J H and Dai J Y 2023 J. Chem. Phys. 159 1089
[29] Zeng Q Y, Chen B, Zhang S, Kang D D, Wang H, Yu X X and Dai J Y 2023 npj Comput. Mater. 9 213
[30] Wang H, Guo X, Zhang L, Wang H and Xue J 2019 Appl. Phys. Lett. 114 244101
[31] Liu J H, Byggmästar J, Fan Z Y, Qian P and Su Y Y 2023 Phys. Rev. B 108 054312
[32] Li Y, Kang D D, Dai J Y and Wang L W 2024 npj Comput. Mater. 10 115
[33] Li W, Zhao H, Zeng X G, Yang X, Chi M H and Gao Y P 2025 Nucl. Instrum. Methods Phys. Res. B 559 165608
[34] Wang W L, Wang K and Deng W J 2024 Int. J. Mod. Phys. B 38 2450219
[35] Yu L T, Fan C, Gao Q Z and Lv L X 2024 J. Phys. Conf. Ser. 2882 012088
[36] Fu B, Fitzgerald S, Hou Q,Wang J and Li M 2017 Nucl. Instrum. Methods Phys. Res. B 393 169
[37] Robinson M, Marks N, Whittle K and Lumpkin G 2012 Phys. Rev. B 85 104105
[38] Guo P F, Song C Z, Wu Y N and Chen S Y 2024 Adv. Electron. Mater 10 2400014
[39] Wang D, Gao N, Setyawan W, Kurtz R J, Wang Z G, Gao X, He W H and Pang L L 2016 Chin. Phys. Lett. 33 096102
[40] Norgett M, Robinson M and Torrens I M 1975 Nucl. Eng. Des 33 50
[41] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818
[42] Wu W and Fahy S 1994 Phys. Rev. B 49 3030
[43] Zhou Y, Chen B, He H Y, Li B and Wang X L 2020 Nucl. Technol. 206 32
[44] Holmström E, Nordlund K and Kuronen A 2010 Phys. Scr. 81 035601
[45] Erginsoy C, Vineyard G and Englert A 1964 Phys. Rev. 133 A595
[46] Delgado D and Vila R 2011 J. Nucl. Mater. 419 32
[47] Jin Y N, Huang H, Zhong Y H, Yuan X T, Li H, Lou D, Xie K, Liu Z X, Cai B and Peng Q 2022 Ceram. Int. 48 16813
[48] Buchan J T, Robinson M, Christie H J, Roach D L, Ross D K and Marks N A 2015 J. Appl. Phys. 117 245901
[49] Liu T, Shao T, Lyu F, Lai X and Shen A H 2022 Model. Simul. Mater. Sci. Eng. 30 035005
[50] Delgado D and Vila R 2011 J. Nucl. Mater. 419 32
[51] Devanathan R, Diaz de la Rubia T andWeberWJ 1998 J. Nucl. Mater. 253 47
[52] Ziegler J F and Biersack J P 1985 The Stopping and Range of Ions in Matter (Boston: Springer) p. 93
[53] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012
[54] Saada D, Adler J and Kalish R 1999 Phys. Rev. B 59 6650
[55] Prins J, Derry T and Sellschop J 1986 Phys. Rev. B 34 8870
[56] Koike J, Parkin D and Mitchell T 1992 Appl. Phys. Lett. 60 1450
[57] Robinson M, Marks N A and Lumpkin G R 2012 Phys. Rev. B 86 134105
[58] Brenner D W and Shenderova O A 2015 Phil. Trans. R. Soc. A. 373 20140139
[59] Slepetz B K, Miklos 2014 Phys. Chem. Chem. Phys. 16 1515
[60] Mainwood A 1999 Diam. Relat. Mater. 8 1560
[61] Setyawan W, Nandipati G, Roche K J, Heinisch H L, Wirth B D and Kurtz R J 2015 J. Nucl. Mater. 462 329
[62] Fu J, Chen Y C, Fang J Z, Gao N, Hu W Y, Jiang C, Zhou H B, Lu G H, Gao F and Deng H Q 2019 J. Nucl. Mater. 524 9
[1] Molecular simulation study on phase separation of immunoglobulin G
Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2025, 34(8): 088701.
[2] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[3] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[4] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[5] Solubility parameters of supercritical CO2 and CO2+H2O fluids: A molecular dynamics study
Junliang Wang(王军良), Jiaqing Fang(方佳清), Ting Wu(吴婷), Quanyuan Wang(王泉源), Zhiyan Pan(潘志彦), Mian Hu(胡沔), and Min Wu(吴旻). Chin. Phys. B, 2025, 34(8): 088201.
[6] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[7] Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering
Wenxia Zhang(张文霞), Weixia Shen(沈维霞), Chao Fang(房超), Ye Wang(王烨), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Kenan Li(黎克楠), Biao Wan(万彪), and Zhuangfei Zhang(张壮飞). Chin. Phys. B, 2025, 34(7): 070703.
[8] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[9] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[10] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[11] Ultrahigh concentration of NV- centers embedded in the CVD epi-diamond layer near the interface with an HPHT diamond substrate
Yuanjie Yang(杨元杰), Shengran Lin(林盛然), Jiaxin Zhao(赵嘉昕), Changfeng Weng(翁长风), Liren Lou(楼立人), Wei Zhu(祝巍), and Guanzhong Wang(王冠中). Chin. Phys. B, 2025, 34(5): 056102.
[12] Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君). Chin. Phys. B, 2025, 34(5): 058101.
[13] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[14] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[15] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
No Suggested Reading articles found!